Bài 3 (2điểm): Trường A có 800 học sinh được xếp thành 3 loại: Giỏi, Khá, Trung bình. Số học sinh Giỏi chiếm 9 16 số học sinh của trường. Số học sinh Khá bằng 5 9 số học sinh Giỏi. a)Tính số học Khá của trường A. b)Số học sinh Trung bình bằng bao nhiêu phần trăm tổng số học sinh trường A. c)Biết số học sinh của trường A bằng 8 9 số học sinh của trường B. Hỏi trường B có bao nhiêu học sinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số hạng từ trang 1 đến trang 9 là: 9 - 1 + 1 = 9 (số hạng)
số chữ số từ trang 1 đến trang 9 là: 9 x 1 = 9 (chữ số)
*vì có 1 chữ số nên nhân với 1
số hạng từ trang 10 đến trang 99 là: 99 - 10 + 1 = 90 (số hạng)
số chữ số từ trang 10 đến trang 99 là: 90 x 2 = 180 (chữ số)
*vì có 2 chữ số nên nhân với 2
số hạng từ trang 100 đến trang 552 là: 552 - 100 + 1 = 453 (số hạng)
số chữ số từ trang 100 đến trang 552 là: 453 x 3 = 1359 (chữ số)
*vì có 3 chữ số nên nhân với 3
số chữ số mà người ta cần dùng là:
9 + 180 + 1359 = 1548 (chữ số)
ĐÁP SỐ: ...
Số chữ số người ta dùng để đánh số cho trang có 1 chữ số là: \(\left(9-1+1\right)\times1=9\)(chữ số)
Số chữ số người ta dùng để đánh số cho trang có 2 chữ số là: \(\left(99-10+1\right)\times2=180\)(chữ số)
Số chữ số người ta dùng để đánh số cho trang có 3 chữ số là: \(\left(552-100+1\right)\times3=1359\)(chữ số)
Tổng số chữ số cần dùng là:
1359+180+9=1548(chữ số)
a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
BA=BD
Do đó: ΔBAI=ΔBDI
=>\(\widehat{ABI}=\widehat{DBI}\)
=>BI là phân giác của góc ABC
b: Ta có: ΔBAD cân tại B
mà BI là đường phân giác
nên BI\(\perp\)AD
c: Ta có: \(\widehat{ABI}+\widehat{AIB}=90^0\)(ΔABI vuông tại A)
\(\widehat{DBK}+\widehat{EBH}=90^0\)(ΔHBE vuông tại H)
mà \(\widehat{ABI}=\widehat{EBH}\)
nên \(\widehat{AIB}=\widehat{BEH}\)
=>\(\widehat{AIE}=\widehat{AEI}\)
=>ΔAEI cân tại A
ΔAEI cân tại A
mà AK là đường cao
nên K là trung điểm của EI
1/
$x^2y=x-y+1$
$\Leftrightarrow y(x^2+1)=x+1$
$\Leftrightarrow y=\frac{x+1}{x^2+1}$
Với $x$ nguyên, để $y$ nguyên thì $x+1\vdots x^2+1(1)$
$\Rightarrow x(x+1)\vdots x^2+1$
$\Rightarrow (x^2+1)+(x-1)\vdots x^2+1$
$\Rightarrow x-1\vdots x^2+1(2)$
Từ $(1); (2)\Rightarrow (x+1)-(x-1)\vdots x^2+1$
$\Rightarrow 2\vdots x^2+1$
$\Rightarrow x^2+1=1$ hoặc $x^2+1=2$ (do $x^2+1\geq 1$ với mọi $x$ nguyên)
$\Rightarrow x=0$ hoặc $x=\pm 1$
$x=0$ thì $y=\frac{0^2+1}{0+1}=1$
$x=1$ thì $y=\frac{1^2+1}{1+1}=1$
$x=-1$ thì $y=0$
2/
$x^2+4xy+3y^2+4x+6y=0$
$\Leftrightarrow (x^2+4xy+4y^2)+4(x+2y)-2y-y^2=0$
$\Leftrightarrow (x+2y)^2+4(x+2y)=y^2+2y$
$\Leftrightarrow (x+2y)^2+4(x+2y)+4=y^2+2y+4$
$\Leftrightarrow (x+2y+2)^2=(y+1)^2+3$
$\Leftrightarrow 3=(x+2y+2)^2-(y+1)^2=(x+2y+2-y-1)(x+2y+2+y+1)$
$\Leftrightarrow 3=(x+y+1)(x+3y+3)$
Do $x,y$ nguyên nên đến đây ta xét các TH sau (đoạn này đơn giản rồi).
TH1: $x+y+1=1, x+3y+3=3$
TH2: $x+y+1=-1, x+3y+3=-3$
TH3: $x+y+1=3, x+3y+3=1$
TH4: $x+y+1=-3, x+3y+3=-1$
\(\dfrac{5}{3}-\dfrac{2}{3}\times\left(\dfrac{1}{4}+\dfrac{5}{6}\right):\dfrac{13}{3}\)
\(=\dfrac{5}{3}-\dfrac{2}{3}\times\left(\dfrac{3}{12}+\dfrac{10}{12}\right)\times\dfrac{3}{13}\)
\(=\dfrac{5}{3}-\dfrac{2}{13}\times\dfrac{13}{12}=\dfrac{5}{3}-\dfrac{1}{6}=\dfrac{10}{6}-\dfrac{1}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(12,8\times\dfrac{1}{2}+12,8\times0,25+12,8\times\dfrac{1}{4}\)
\(=12,8\times0,5+12,8\times0,25+12,8\times0,25\)
\(=12,8\times\left(0,5+0,25+0,25\right)\)
\(=12,8\times1\)
\(=12,8\)
\(12,8\times\dfrac{1}{2}+12,8\times0,25+12,8\times\dfrac{1}{4}\\ =12,8\times\dfrac{1}{2}+12,8\times\dfrac{25}{100}+12,8\times\dfrac{1}{4}\\ =12,8\times\dfrac{1}{2}+12,8\times\dfrac{1}{4}+12,8\times\dfrac{1}{4}\\ =12,8\times\left(\dfrac{2}{4}+\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =12,8\times\dfrac{4}{4}=12,8\times1=12,8\)
Ta có:
x²y + xy² + x + y = 2020
xy(x + y) + (x + y) = 2020
(x + y)(xy + 1) = 2020
(x + y).(11 + 1) = 2020
12(x + y) = 2020
x + y = 2020 : 12
x + y = 505/3
x² + y² = (x + y)² - 2xy
= (505/3)² - 2.11
= 255025/9 - 22
= 254827/9
17:
a: Gọi hai số tự nhiên liên tiếp là a;a+1
Hiệu bình phương của chúng là 209 nên ta có:
\(\left(a+1\right)^2-a^2=209\)
=>\(a^2+2a+1-a^2=209\)
=>2a+1=209
=>2a=208
=>a=104
vậy: Hai số cần tìm là 104;104+1=105
b: Gọi hai số tự nhiên lẻ liên tiếp là 2k+1;2k+3
Hiệu lập phương của chúng là 1178 nên ta có:
\(\left(2k+3\right)^3-\left(2k+1\right)^3=1178\)
=>\(8k^3+36k^2+54k+27-8k^3-12k^2-6k-1=1178\)
=>\(24k^2+48k+26-1178=0\)
=>\(24k^2+48k-1152=0\)
=>\(\left[{}\begin{matrix}k=6\left(nhận\right)\\k=-8\left(loại\right)\end{matrix}\right.\)
Vậy: Hai số cần tìm là \(2\cdot6+1=13;2\cdot6+3=15\)
19:
a: \(A=x^2-4x+10\)
\(=x^2-4x+4+6\)
\(=\left(x-2\right)^2+6>=6>0\forall x\)
=>ĐPCM
b: \(B=2x^2-2x+3\)
\(=2\left(x^2-x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{5}{4}\right)\)
\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{2}>=\dfrac{5}{2}>0\forall x\)
=>ĐPCM
c: \(C=x^4-3x^2+5\)
\(=x^4-3x^2+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x^2-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
=>ĐPCM
d: \(D=\dfrac{1}{4}x^4+\dfrac{2}{5}x^2+2\)
\(=x^2\left(\dfrac{1}{4}x^2+\dfrac{2}{5}\right)+2>=2>0\forall x\)
=>ĐPCM
e: \(E=x^2+\left(x+1\right)^2\)
\(=x^2+x^2+2x+1=2x^2+2x+1\)
\(=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}>0\forall x\)
=>ĐPCM
f: \(F=\left(x-2\right)^2+\left(x-4\right)^2\)
\(=x^2-4x+4+x^2-8x+16\)
\(=2x^2-12x+20=2\left(x^2-6x+10\right)\)
\(=2\left(x^2-6x+9+1\right)=2\left[\left(x-3\right)^2+1\right]>=2\cdot1=2>0\forall x\)
g: \(G=x^2+y^2+2x-6y+11\)
\(=x^2+2x+1+y^2-6y+9+1\)
\(=\left(x+1\right)^2+\left(y-3\right)^2+1>=1>0\forall x,y\)
=>ĐPCM
a) số học sinh giỏi là: \(\dfrac{9}{16}\cdot800=450\left(HS\right)\)
số học sinh khá là: \(\dfrac{5}{9}\cdot450=250\left(HS\right)\)
b) số HS trung bình là: 800 - 450 - 250 = 100 (HS)
phần trăm số HS trung bình so với tổng số HS là:
\(\dfrac{100}{800}\cdot100\%=12,5\%\)
c) số HS trường B có là: \(800:\dfrac{8}{9}=900\left(HS\right)\)
ủa đây là toán 5 mà