Cho A(x) = 2x4 + 4x3 - 3x2 - 4x + 1
Tính A(x) : (x2-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
a, Vì x và y tỉ lệ thuận
\(\dfrac{x}{y}=k\Rightarrow x=k.y\)
Thay \(x=6;y=4\) vào
\(6=4.k\Rightarrow k=6:4=\dfrac{6}{4}=\dfrac{3}{2}\)
Vậy \(k=\dfrac{3}{2}\)
b, Thay \(x=10\) vào \(x=\dfrac{3}{2}y\)
\(10=\dfrac{3}{2}.y\\ \Rightarrow y=10:\dfrac{3}{2}=\dfrac{20}{3}\)
Vậy \(y=\dfrac{20}{3}\)
c, Ta có \(k=\dfrac{3}{2}\)
x tỉ lệ thuận với y
\(\dfrac{x}{y}=\dfrac{3}{2}\\ \Rightarrow y=\dfrac{2}{3}x\)
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a) Vì AH là đường cao của tam giác ABC (gt)
=> AH vuông góc với BC (định nghĩa)
=> AH < AC (quan hệ giữa đường vuông góc và đường xiên)
b) Xét tam giác HMC và tam giác DMA, có:
+ HM = DM (M là trung điểm HD)
+ CM = AM (M là trung điểm AC)
+ góc HMC = góc DMA (đối đỉnh
=> tam giác HMC = tam giác DMA (cgc)
c) Vì AM = CM (M là trung điểm AC)
Mà AM + CM = AC
=> AM = 1/2 AC (đpcm)
2\(x\) = 3y ⇒ \(\dfrac{x}{3}\) = \(\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\) = \(\dfrac{x-y}{3-2}\) = \(\dfrac{-15}{1}\) = -15
⇒ \(x\) = -15 \(\times\) 3 = -45; y = -15 \(\times\) 2 = -30
Kết luận \(x\) = -45; y = -30
Ta sử dụng phương pháp chia đa thức bằng phép chia đa thức tổng quát để giải bài toán này. Theo đó, ta có:
2x^4 + 4x³-3x² - 4x + 1: (x² - 1)
= 2x² + 4x + 1 - (x² + 4x + 1)/(x² - 1)
= 2x² + 4x + 1 - (x² - 1 + 4x+2)/(x² -
1)
= 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/(x² - 1) = 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/[(x+1)(x-1)]
Vậy kết quả là:
A(x) (x²-1)=2x² + 4x + 1 - (x² + 4x +
2)/(x² - 1) + 1/[(x+1)(x-1)]