Mình cảm ơn!! Cần giải gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Khối lượng hạt cà phê khô thu được là:
420:(20:5)=420:4=105(kg)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 22:
a: Diện tích 1 ô trồng hoa là \(a^2\left(m^2\right)\)
Diện tích trồng hoa là \(4\cdot a^2\left(m^2\right)\)
Diện tích đất trồng rau là: \(20^2-4a^2=400-4a^2\left(m^2\right)\)
b: Diện tích đất trồng hoa bằng diện tích đất trồng rau
=>\(4a^2=400-4a^2\)
=>\(8a^2=400\)
=>\(a^2=50\)
=>\(a=5\sqrt{2}\)
c:
Số tiền lãi khi trồng hoa là: \(20000\cdot4a^2=80000a^2\left(đồng\right)=80a^2\left(nghìnđồng\right)\)
Số tiền lãi khi trồng rau là: \(15\cdot\left(400-4a^2\right)=6000-60a^2\)(nghìn đồng)
Số tiền lãi trồng hoa bằng 3/4 số tiền lãi trồng rau nên ta có:
\(80a^2=\dfrac{3}{4}\left(6000-60a^2\right)\)
=>\(80a^2=4500-45a^2\)
=>\(125a^2=4500\)
=>\(a^2=36\)
=>Diện tích đất trồng hoa là \(4a^2=144\left(m^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{3}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{2}\left(bể\right)\)
Vì \(\dfrac{1}{2}>\dfrac{1}{3}\) nên trong 1 giờ, vòi 2 chảy được nhiều hơn vòi 1 là \(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\left(bể\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=2n^2+n-3\)
\(=2n^2+3n-2n-3\)
\(=n\left(2n+3\right)-\left(2n+3\right)=\left(2n+3\right)\left(n-1\right)\)
Nếu n=0 thì \(A=\left(2\cdot0+3\right)\left(0-1\right)=-3< 0\)
=>Loại
Nếu n=1 thì \(A=\left(2\cdot1+3\right)\left(1-1\right)=0\)
=>Loại
Nếu n=2 thì \(A=\left(2\cdot2+3\right)\left(2-1\right)=7\) là số nguyên tố
=>Nhận
Khi n>2 thì \(A=\left(2n+3\right)\left(n-1\right)\) là tích của 2 số tự nhiên lớn hơn 1
=>A không phải là số nguyên tố
=>Loại
b: \(B=n^4+n^2+1=n^4+2n^2+1-n^2\)
\(=\left(n^2+1\right)^2-n^2=\left(n^2-n+1\right)\left(n^2+n+1\right)\)
Khi n=0 thì \(B=\left(0^2-0+1\right)\left(0^2+0+1\right)=1\)
=>Loại
Khi n=1 thì \(B=\left(1^2-1+1\right)\left(1^2+1+1\right)=3\) là số nguyên tố
=>Nhận
Khi n>1 thì \(B=\left(n^2-n+1\right)\left(n^2+n+1\right)\) là tích của hai số tự nhiên lớn hơn 1
=>Loại
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số nhãn vở của Chi là x(nhãn)
(Điều kiện: \(x\in Z^+\))
Trung bình cộng số nhãn vở của 3 bạn là \(\dfrac{x+20+20}{3}=\dfrac{x+40}{3}\)
Chi có số nhãn vở ít hơn trung bình cộng của 3 bạn là 6 cái nên ta có:
\(\dfrac{x+40}{3}-x=6\)
=>\(\dfrac{x+40-3x}{3}=6\)
=>-2x+40=18
=>-2x=-22
=>x=11(nhận)
Vậy: Chi có 11 nhãn vở
Gọi số nhãn vở của Chi là \(x\) (nhãn) (\(x\inℕ^∗\))
Ta có: Trung bình cộng số nhãn vở của 3 bạn là:
\(\dfrac{x+20+20}{3}=\dfrac{x+40}{3}\)
Vì Chi có số nhãn vở ít hơn trung bình cộng của ba bạn 6 cái nên:
\(x-\dfrac{x+40}{3}=6\)
\(3x-\left(x+40\right)=18\)
\(2x-40=18\)
\(2x=58\)
\(x=29\) (nhãn) (thỏa mãn điều kiện)
Vậy Chi có \(29\) nhãn vở.
![](https://rs.olm.vn/images/avt/0.png?1311)
`#3107.101107`
`(a + b + c)^2 = a^2 + b^2 + c^2`
`\Rightarrow (a + b + c)^2 - (a^2 + b^2 + c^2) = 0`
`\Rightarrow a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 = 0`
`\Rightarrow 2ab + 2bc + 2ca = 0`
`\Rightarrow 2(ab + bc + ca) = 0`
`\Rightarrow ab + bc + ca = 0`
\(\Rightarrow\dfrac{ab+bc+ca}{abc}=0\\ \Rightarrow\dfrac{ab}{abc}+\dfrac{bc}{abc}+\dfrac{ca}{abc}=0\\ \Rightarrow\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=0\)
Đặt \(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\)
`=> x + y + z = 0`
`=> x + y = -z` (*)
`=> (x + y)^3 = -(z)^3`
`=> x^3 + y^3 + 3xy(x + y) = -z^3`
Thay (*) vào bt
`=> x^3 + y^3 + z^3 + 3xy(-z) = 0`
`=> x^3 + y^3 + z^3 - 3xyz = 0`
`=> x^3 + y^3 + z^3 = 3xyz`
`=>`\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\left(\text{đpcm}\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
$53\times x-34=135: 1\frac78$
$53\times x-34=135:\frac{15}{8}$
$53\times x-34=72$
$53\times x=72+34$
$53\times x=106$
$x=106:53$
$x=2$
a/
$A=x^2-4x+10=(x^2-4x+4)+6=(x-2)^2+6$
Ta thấy:
$(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A=(x-2)^2+6\geq 6>0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A$ luôn có giá trị dương với mọi giá trị $x$.
a/
$B=2x^2-2x+3=x^2+(x^2-2x+1)+2=x^2+(x-1)^2+2$
Ta thấy:
$x^2\geq 0; (x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow B=x^2+(x-1)^2+2\geq 2>0$ với mọi $x\in\mathbb{R}$
$\Rightarrow B$ luôn có giá trị dương với mọi giá trị $x$.