Giải pt: 3(x^2+2x-1)-2(x^2+3x-1)+5x^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a:Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét (O) có \(\widehat{AKB};\widehat{ACB}\) là các góc nội tiếp chắn cung AB
nên \(\widehat{AKB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{AHE}\left(=90^0-\widehat{DAC}\right)\)
nên \(\widehat{AKB}=\widehat{AHE}\)
=>\(\widehat{AHK}=\widehat{AKH}\)
=>AK=AH
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{FBC}=180^0\)
mà \(\widehat{CEF}+\widehat{AEF}=180^0\)
nên \(\widehat{AEF}=\widehat{ABC}\)
Gọi Ax là tiếp tuyến tại A của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
DO đó: \(\widehat{xAC}=\widehat{ABC}\)
=>\(\widehat{xAC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FE//Ax
mà Ax\(\perp\)OA
nên OA\(\perp\)EF
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\sqrt{x^2-4x+1}=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-4x+1=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-4x+1=0\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{4}\)
b.
\(\sqrt{5x^2-2x+2}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\5x^2-2x+2=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\4x^2-4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
c.
\(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\sqrt{\left(4-x\right)^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
\(\Leftrightarrow4-x\ge0\)
\(\Rightarrow x\le4\)
d.
\(\sqrt{3x+1}=\sqrt{4x-3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-3\ge0\\3x+1=4x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\end{matrix}\right.\)
\(\Rightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
met => was going to meet
Câu gián tiếp ta lùi 1 thì nhé
am => was
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Xét tam giác ABC vuông tại A ta có:
\(sinC=\dfrac{AB}{BC}=>\dfrac{AB}{BC}=\dfrac{3}{4}\\ =>AB=\dfrac{3}{4}BC=\dfrac{3}{4}\cdot10=\dfrac{15}{2}\left(cm\right)\)
Áp dụng định lý Pythagore cho tam giác ABC ta có:
\(AB^2+AC^2=BC^2\\ =>\left(\dfrac{15}{2}\right)^2+AC^2=10^2\\ =>AC=\sqrt{10^2-\left(\dfrac{15}{2}\right)^2}=\dfrac{5\sqrt{7}}{2}\left(cm\right)\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BC\cdot BH=>BH=\dfrac{AB^2}{BC}=\left(\dfrac{15}{2}\right)^2:10=\dfrac{225}{40}\left(cm\right)\\ AC^2=BC\cdot CH=>CH=\dfrac{AC^2}{BC}=\left(\dfrac{5\sqrt{7}}{2}\right)^2:10=\dfrac{175}{40}\left(cm\right)\)
Bài 9:
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{BD}{BC}=\dfrac{3}{7}\)
=>\(S_{ABD}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\\ =\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\cdot\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\\ =1-\left(\sqrt{a}\right)^2\\ =1-a=VP\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{20+2\cdot2\sqrt{5}\cdot3+9}+\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)
`sqrt{29 + 12 sqrt{5}} + sqrt{29 - 12sqrt{5}}`
`= sqrt{20 + 2 . 2sqrt{5} . 3 + 9 } + sqrt{20 - 2 . 2sqrt{5} . 3 + 9}`
`= sqrt{(2sqrt{5})^2 + 2 . 2sqrt{5} . 3 + 3^2 } + sqrt{(2sqrt{5})^2 - 2 . 2sqrt{5} . 3 + 3^2}`
`= sqrt{(2sqrt{5} + 3)^2} + sqrt{(2sqrt{5} - 3)^2}`
`= |2sqrt{5} + 3| + |2sqrt{5} + 3|`
`= 2sqrt{5} + 3 + 2sqrt{5} - 3`
`= 4 sqrt{5}`
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh nam của lớp đó là `a` (học sinh)
Số học sinh nữ của lớp đó là `b` (học sinh)
ĐK: `0<a,b<43` và `a,b∈N`
Số học sinh nam hơn số học sinh nữ là 3 hs nên ta có pt:
`a-b=3(1)`
Số học sinh của lớp là 43 học sinh nên ta có pt:
`a+b=43(2) `
Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}a-b=3\\a+b=43\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=46\\b=a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=23\\b=23-3=20\end{matrix}\right.\left(tm\right)\)
Vậy: ...
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C a b c H
Dựng \(BH\perp AC\left(H\in AC\right)\)
Xét tg vuông BHC có
\(BC^2=BH^2+CH^2\) (Pitago)
\(\Rightarrow a^2=BH^2+\left(AC-AH\right)^2=BH^2+AC^2+AH^2-2AC.AH=\)
\(=\left(BH^2+AH^2\right)+AC^2-2AC.AH\) (1)
Xét tg vuông AHB có
\(BH^2+AH^2=AB^2=c^2\)
\(AH=AB\cos A=c\cos A\)
Thay vào (1)
\(\Rightarrow a^2=b^2+c^2-2bc\cos A\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi n là hóa trị cao nhất của kim loại Z
\(Z+\dfrac{n}{2}Cl_2\underrightarrow{t^o}ZCl_n\)
\(n_Z=\dfrac{2,275}{Z}\)
\(m_{ZCl_n}=\dfrac{2,275}{Z}.\left(Z+35,5n\right)=\dfrac{2,275Z+80,7625n}{Z}=4,76\)
Với n = 2 => Z = 65
Vậy kim loại cần tìm là Zn (kẽm)
\(3\left(x^2+2x-1\right)-2\left(x^2+3x-1\right)+5x^2=0\)
=>\(3x^2+6x-3-2x^2-6x+2+5x^2=0\)
=>\(6x^2-1=0\)
=>\(6x^2=1\)
=>\(x^2=\dfrac{1}{6}\)
=>\(x=\pm\dfrac{\sqrt{6}}{6}\)