Từ một tấm tôn hình chữ nhật kích thước 40cm x 60cm người ta gò thành mặt xung quanh của một hình trụ có chiều cao 40cm. Tính thể tích của khối trụ đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(Q=ac+bc-2022ab\le ac+bc=c\left(a+b\right)\le\dfrac{1}{4}\left(c+a+b\right)^2=\dfrac{1}{4}\)
\(Q_{max}=\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}a+b+c=1\\ab=0\\c=a+b\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right);\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
\(Q=c\left(a+b\right)-2022ab\ge c\left(a+b\right)-\dfrac{1011}{2}\left(a+b\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}\left(1-c\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}c\left(c-2\right)-\dfrac{1011}{2}\)
\(Q\ge\dfrac{c\left(1011+1013\left(1-c\right)\right)}{2}-\dfrac{1011}{2}\ge-\dfrac{1011}{2}\)
\(Q_{min}=-\dfrac{1011}{2}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)

Bill hasn't made up his mind what he should bring with him on the trip to America.
Have a great day.

a) Ta có \(\widehat{AKB}=90^0\) (góc nội tiếp chắn nửa đường tròn)
\(\widehat{BEC}=90^0\) (Do \(CD\) là trung trực của \(OA\))
\(\Rightarrow\widehat{BKC}+\widehat{BEC}=90^0+90^0=180^0\)
\(\Rightarrow BEHK\) là tứ giác nội tiếp.
b) Ta có \(OC=OD=R\) nên tam giác \(OCD\) cân tại O
Mà \(OE\perp CD\Rightarrow OE\) là phân giác \(\widehat{COD}\Rightarrow\widehat{COA}=\widehat{DOA}\)
\(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)
Do \(\left\{{}\begin{matrix}\widehat{ACH}=\dfrac{1}{2}sđ\stackrel\frown{AD}\\\widehat{AKC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\end{matrix}\right.\Rightarrow\widehat{ACH}=\widehat{AKC}\)
Xét \(\Delta ACH\) và \(\Delta AKC\) có
\(\widehat{CAK}\) chung
\(\widehat{ACH}=\widehat{AKC}\) (cmt)
\(\Rightarrow\Delta ACH\sim\Delta AKC\) (g.g) \(\Rightarrow\dfrac{AC}{AH}=\dfrac{AK}{AC}\Rightarrow AC^2=AH.AK\)
Ta có: Tam giác \(AOC\) cân tại \(O\) (do \(OC=OA=R\))
Mặt khác: \(\Delta OEC\) vuông tại \(E\), có \(OE=\dfrac{1}{2}OA=\dfrac{1}{2}OC\)
\(\Rightarrow\widehat{OCE}=30^0\Rightarrow\widehat{AOC}=60^0\)
\(\Rightarrow\Delta OAC\) đều hay \(AC=OA=OC=R\)

Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
