cho tam giác aob trên tia đối tia oa,ob lấy lần lượt c và d sao cho oc=od từ b kẻ bm vuông góc với ac, cn vuông góc với bd gọi p là tđ của bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+9=-xy+2y\)
\(\Rightarrow x^2-3x+xy-2y=-9\)
\(\Rightarrow\left(x^2+xy\right)-\left(2x+2y\right)-x=-9\)
\(\Rightarrow x\left(x+y\right)-2\left(x+y\right)-x=-9\)
\(\Rightarrow\left(x-2\right)\left(x+y\right)-x=-9\)
\(\Rightarrow\left(x-2\right)\left(x+y\right)-\left(x-2\right)=-7\)
\(\Rightarrow\left(x-2\right)\left(x+y-1\right)=-7\) (1)
Vì x và y nguyên nên (x-2) và (x+y-1) cũng nguyên (2)
Từ (1) và (2) suy ra:
\(\left(x-2\right);\left(x+y-1\right)\inƯ\left(-7\right)=\left\{\text{±}1;\text{±}7\right\}\)
Sau đó thì bạn lập bảng và kết luận nhé!
\(6x^4+7x^3-37x^2-8x+12\\ =6x^4-3x^3+10x^3-5x^2-32x^2+16x-24x+12\\ =3x^3\left(2x-1\right)+5x^2\left(2x-1\right)-16x\left(2x-1\right)-12\left(2x-1\right)\\ =\left(2x-1\right)\left(3x^3+5x^2-16x-12\right)\\ =\left(2x-1\right)\left(3x^3-6x^2+11x^2-22x+6x-12\right)\\ =\left(2x-1\right)\left[3x^2\left(x-2\right)+11x\left(x-2\right)+6\left(x-2\right)\right]\\ =\left(2x-1\right)\left(x-2\right)\left(3x^2+11x+6\right)\\ =\left(2x-1\right)\left(x-2\right)\left(3x^2+9x+2x+6\right)\\ =\left(2x-1\right)\left(x-2\right)\left[3x\left(x+3\right)+2\left(x+3\right)\right]\\ =\left(2x-1\right)\left(x-2\right)\left(x+3\right)\left(3x+2\right)\)
\(x^4+x^3+2x^2+x+1\\= x^4+x^3+x^2+x^2+x+1\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+1\right)\left(x^2+x+1\right)\)
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
=100+99+98+97+...+2+1
\(=\dfrac{100\cdot101}{2}=50\cdot101=5050\)
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\\ =\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ =199+195+...+7+3\\ =\dfrac{\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right)}{2}\\ =\dfrac{\left(196:4+1\right)\cdot202}{2}\\ =5050\)
\(-2x^2-8x+2=-2\left(x^2+4x\right)+2=-2\left(x^2+4x+4-4\right)+2\)
\(=-2\left(x+2\right)^2+10\le10\)
Dấu ''='' xảy ra khi x = -2
ĐKXĐ: \(x\notin\left\{7;-1945\right\}\)
\(\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{7-x}\cdot\dfrac{4x-2}{x+1945}\)
\(=\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}-\dfrac{19x+8}{x-7}\cdot\dfrac{4x-2}{x+1945}\)
\(=\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9-4x+2}{x+1945}\)
\(=\dfrac{19x+8}{x+1945}\cdot\dfrac{x-7}{x-7}=\dfrac{19x+8}{x+1945}\)