5x4=??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5:\dfrac{3}{14}-4\dfrac{4}{5}:\dfrac{3}{4}\\ =5.\dfrac{14}{3}-\dfrac{24}{5}.\dfrac{4}{3}\\ =\dfrac{70}{3}-\dfrac{32}{5}\\ =\dfrac{254}{15}\)
.
\(-\dfrac{13}{8}.\left(\dfrac{8}{13}+\dfrac{32}{38}\right)-\dfrac{15}{7}\\ =-\dfrac{13}{8}.\left(\dfrac{8}{13}+\dfrac{16}{19}\right)-\dfrac{15}{7}\\ =-\dfrac{13}{8}.\dfrac{360}{247}-\dfrac{15}{7}\\ =-\dfrac{45}{19}-\dfrac{15}{7}\\ =-\dfrac{600}{133}\)
\(\dfrac{x}{3}-\dfrac{1}{8}+\dfrac{4}{2}-\dfrac{3}{8}=\dfrac{5}{50}\\ \dfrac{x}{3}-\dfrac{4}{8}+2=\dfrac{1}{10}\\ \dfrac{x}{3}-\dfrac{1}{2}+2=\dfrac{1}{10}\\ \dfrac{x}{3}+\dfrac{3}{2}=\dfrac{1}{10}\\ \dfrac{x}{3}=\dfrac{1}{10}-\dfrac{3}{2}\\ \dfrac{x}{3}=-\dfrac{7}{5}\\ x=-\dfrac{7}{5}.3\\ x=-\dfrac{21}{5}\)
\(A=\dfrac{-3}{5}+\left(\dfrac{-2}{5}-99\right)\)
\(A=\dfrac{-3}{5}+\dfrac{-2}{5}-99\)
\(A=\left(\dfrac{-3}{5}+\dfrac{-2}{5}\right)-99\)
\(A=\dfrac{-5}{5}-99\)
\(A=-1-99\)
\(A=-100\)
Ý của đề bài là nếu có 4 số lẻ \(a,b,c,d\) mà \(a+b+c+d=202\) thì \(ƯCLN\left(a,b,c,d\right)=1\). Còn cái mà bạn Tú phản hồi là lấy VD \(3+9+93+97=202\) mà \(ƯCLN\left(3,9\right)\ne1\) thì cái đấy chỉ là ƯCLN của 2 trong 4 số thôi nên đề bài vẫn đúng nhé.
Còn bài giải như sau: Gọi \(ƯCLN\left(a,b,c,d\right)=k\) (\(k\inℕ^∗\) và k lẻ)
Khi đó \(\left\{{}\begin{matrix}a=xk\\b=yk\\c=zk\\d=tk\end{matrix}\right.\) với \(x,y,z,t\) là các số tự nhiên khác 0 và nguyên tố cùng nhau.
Như vậy nếu \(a+b+c+d=202\) thì \(xk+yk+zk+tk=202\) hay \(x+y+z+t=\dfrac{202}{k}\). Khi đó \(202⋮k\) \(\Rightarrow k\in\left\{1;2;101;202\right\}\)
Do \(x,y,z,t\ge1\) nên \(x+y+z+t\ge4\). Điều này có nghĩa là \(\dfrac{202}{k}\ge4\) hay \(k\le50\). Do đó \(k=1\) hoặc \(k=2\). Tuy nhiên, vì \(k\) lẻ nên giá trị duy nhất có thể của \(k\) là \(k=1\)
Khi đó \(a=x;b=y;c=z;d=t\), dẫn đến:
\(ƯCLN\left(a,b,c,d\right)=ƯCLN\left(x,y,z,t\right)=1\)
Ta có đpcm.
Đề bài chưa rõ bạn nhé
Bốn số lẻ đó chưa chắc đã là bốn số nguyên tố cùng nhau
VD: 202 = 3+9+93+97
Mà 3 với 9 có phải số nguyên tố cùng nhau đâu
\(\dfrac{1}{21}\) = \(\dfrac{1\times3}{21\times3}\) = \(\dfrac{3}{63}\) < \(\dfrac{3}{27}\)
Vậy \(\dfrac{1}{21}\) < \(\dfrac{3}{27}\)
a) So với học sinh của cả lớp, 2 tổ chiếm:
\(\frac24\times100\%=50\%\)
b) Số học sinh của 2 tổ là:
\(36\times50\%=18\) (học sinh)
a; \(\dfrac{4}{27}\) = \(\dfrac{4\times7}{27\times7}\) = \(\dfrac{28}{189}\)
\(\dfrac{15}{63}\) = \(\dfrac{15\times3}{63\times3}\) = \(\dfrac{45}{189}\)
\(\dfrac{28}{189}\) < \(\dfrac{45}{189}\)
- \(\dfrac{28}{189}\) > - \(\dfrac{45}{189}\)
Vậy - \(\dfrac{4}{27}\) > \(\dfrac{15}{-63}\)
b; \(\dfrac{13}{15}\) = \(\dfrac{13\times9}{15\times9}\) = \(\dfrac{117}{135}\)
\(\dfrac{9}{11}\) = \(\dfrac{9\times13}{11\times13}\) = \(\dfrac{117}{143}\)
\(\dfrac{117}{135}\) > \(\dfrac{117}{143}\)
Vậy \(\dfrac{13}{15}\) > \(\dfrac{9}{11}\)
Tổng 3 phân số là:
\(\dfrac{31}{90}\times3=\dfrac{31}{30}\)
Ba lần phân số thứ hai bằng:
\(\dfrac{31}{30}+\dfrac{2}{15}-\dfrac{1}{6}=1\)
Phân số thứ nhất là:
\(1+\dfrac{1}{6}=\dfrac{7}{6}\)
Phân số thứ ba là:
\(1-\dfrac{2}{15}=\dfrac{13}{15}\)
Đáp số:...
Thanks Pham Le Minh Vuong nhé
20