Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 25:
Sửa đề: \(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
Câu 23:
Số học sinh nam là:
\(45\cdot\dfrac{2}{3+2}=45\cdot\dfrac{2}{5}=18\left(bạn\right)\)
Số học sinh nữ là 45-18=27(bạn)
gọi t là thời gian mà lúc 7h30 đến khi 2 xe gặp nhau
tổng quãng đường mà cả 2 xe đi được cho đến lúc gặp nhau là:
40t + 30t = 175
70t = 175
t = 2,5 = 2h30p
thời gian sau 2,5 giờ đi là:
7h30 + 2h30 = 10h00
quãng đường ô tô đi từ A đến điểm gặp nhau là:
40 x 2,5 = 100 (km)
đáp số: a) 10h00 sáng
b) 100km
a: Ta có: \(MB=MC=\dfrac{BC}{2}\)
\(NA=ND=\dfrac{AD}{2}\)
\(BA=CD=\dfrac{BC}{2}\)
Do đó: MB=MC=NA=ND=BA=CD
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
b: Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
Xét hình bình hành BMNA có BM=BA
nên BMNA là hình thoi
=>BN\(\perp\)AM tại P và P là trung điểm chung của AM và BN
Xét tứ giác CMDN có
CM//DN
CM=DN
Do đó: CMND là hình bình hành
Hình bình hành CMND có CM=CD
nên CMND là hình thoi
=>CN\(\perp\)MD tại Q và Q là trung điểm chung của DM và CN
Xét ΔMAD có
MN là đường trung tuyến
\(MN=\dfrac{AD}{2}\left(=AB\right)\)
Do đó: ΔMAD vuông tại M
Xét tứ giác PMQN có
\(\widehat{PNQ}=\widehat{MPN}=\widehat{MQN}\left(=90^0\right)\)
nên PMQN là hình chữ nhật
c: Để PMQN là hình chữ nhật thì PM=PN
=>AM=BN
Hình thoi ABMN có AM=BN
nên ABMN là hình vuông
=>\(\widehat{ABC}=90^0\)
d: \(AD=2\cdot AB=4\left(cm\right)\)
Xét ΔMAD vuông tại M có \(sinMAD=\dfrac{MD}{AD}\)
=>\(\dfrac{MD}{4}=sin30=\dfrac{1}{2}\)
=>MD=2(cm)
=>MQ=1(cm)
MN=AB
=>MN=2(cm)
ΔMNQ vuông tại Q
=>\(MQ^2+QN^2=MN^2\)
=>\(QN=\sqrt{3}\left(cm\right)\)
Diện tích tứ giác PMQN là:
\(S_{PMQN}=\sqrt{3}\cdot1=\sqrt{3}\left(cm^2\right)\)
Ta có: `x+y=a+b`
`\Leftrightarrow (x+y)^2=(a+b)^2`
`\Leftrightarrow x^2+2xy+y^2=a^+2ab+b^2`
`\Leftrightarrow 2xy=2ab` (vì `x^2+y^2=a^2+b^2`)
`\Leftrightarrow xy=ab`
Khi đó: `x^3+y^3=(x+y)(x^2-xy+y^2)`
`=(a+b)(a^2-ab+b^2)=a^3+b^3` (đpcm)