K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2024

a) 

\(P=4x^4+y^4\\ =4x^4+4x^2y^2+y^4-4x^2y^2\\ =\left(4x^4+4x^2y^2+y^2\right)-4x^2y^2\\ =\left(2x^2+y^2\right)^2-\left(2xy\right)^2\\ =\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\) 

b) 

\(Q=x^4+64\\ =x^4+16x^2+64-16x^2\\ =\left(x^4+16x^2+64\right)-16x^2\\ =\left(x^2+8\right)^2-\left(4x\right)^2\\ =\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

2 tháng 7 2024

$(-25).(-17).4+(-20)$

$=25.17.4-20$

$=(25.4).17-20$

$=100.17-20$

$=1700-20=1680$

2 tháng 7 2024

(-25).(-17).4+(-20)

=25.17.4+(-20)

=25.4.17+(-20)

=100.17+(-20)

=1700+(-20)

=1700-20

= 1680

Sửa đề: \(a^2+2ab+b^2-2a-2b+1\)

\(=\left(a^2+2ab+b^2\right)-2\left(a+b\right)+1\)

\(=\left(a+b\right)^2-2\left(a+b\right)\cdot1+1^2\)

\(=\left(a+b-1\right)^2\)

Xét tứ giác ABCD có \(\widehat{ABC}+\widehat{ADC}=180^0\)

nên ABCD là tứ giác nội tiếp

=>\(\widehat{DAC}=\widehat{DBC};\widehat{BAC}=\widehat{BDC}\)

mà \(\widehat{CDB}=\widehat{CBD}\)(CB=CD)

nên \(\widehat{DAC}=\widehat{BAC}\)

=>AC là phân giác của góc BAD

1 tháng 7 2024

\(x^2+5y^2+2y-4xy-3=0\\ \Rightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Mình nghĩ bạn thiếu đề nhé

Bổ sung đề: Tìm cặp x, y nguyên thỏa mãn

Với x, y nguyên hiển nhiên x-2y và y+1 nguyên

Mà: \(4=0^2+2^2=0^2+\left(-2\right)^2\)

Các trường hợp xảy ra:

TH1: y+1=0 và x-2y=2

=> y=-1 và x=0

TH2: y+1=0 và x-2y=-2

=> y=-1 và x=-4

TH3: y+1=2 và x-2y=0

=> y=1 và x=2

TH4: y+1=-2 và x-2y=0

=> y=-3 và x=-6

Vậy (x;y)=(0;-1);(-4;-1);(2;1);(-6;-3)

1 tháng 7 2024

Sửa đề: Chứng minh \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

Bài làm:

\(VT=\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)\left(a+b\right)\\ =\left(a^2+ab+ab+b^2\right)\left(a+b\right)\\ =\left(a^2+2ab+b^2\right)\left(a+b\right)\\ =a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\\ =a^3+3a^2b+3ab^2+b^3=VP\left(DPCM\right)\)

1 tháng 7 2024

a) 

\(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y}=-1\\\dfrac{3}{x-1}-\dfrac{2}{y}=7\end{matrix}\right.\left(x\ne1;x\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{2}{y}=-2\\\dfrac{3}{x-1}-\dfrac{2}{y}=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y}=-1\\\dfrac{5}{x-1}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+\dfrac{1}{y}=-1\\x-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-1-1=-2\\x=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=2\end{matrix}\right.\left(tm\right)\)

b) 

\(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{1}{y+1}=3\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\left(x\ne2;y\ne-1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2}+\dfrac{2}{y+1}=6\\\dfrac{4}{x-2}-\dfrac{3}{y+1}=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y+1}=5\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=1\\\dfrac{2}{x-2}+1=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=0\\\dfrac{2}{x-2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x-2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\left(tm\right)\)

1 tháng 7 2024

c)

\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\left(x\ne2;y\ne1\right) \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=4\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\\\dfrac{5}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{3}{5}=2\\y-1=\dfrac{5}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=2-\dfrac{3}{5}=\dfrac{7}{5}\\y=\dfrac{5}{3}+1=\dfrac{8}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=\dfrac{5}{7}\Leftrightarrow x=\dfrac{5}{7}+2=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\left(tm\right)\)

1 tháng 7 2024

a) 

\(\left\{{}\begin{matrix}\dfrac{1}{3x}+\dfrac{1}{3y}=\dfrac{1}{4}\\\dfrac{5}{6x}+\dfrac{1}{y}=\dfrac{2}{3}\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{5}{6x}+\dfrac{1}{y}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{5}{6x}=\dfrac{3}{4}-\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6x}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x=12\Leftrightarrow x=2\\\dfrac{1}{2}+\dfrac{1}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{y}=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\left(tm\right)\)

b) 

\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=2\\2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=16\end{matrix}\right.\left(x,y\ne0\right) \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=2\\\dfrac{1}{x}+\dfrac{1}{y}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=10\\\dfrac{1}{x}+\dfrac{1}{y}=8\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\5+\dfrac{1}{y}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\\dfrac{1}{y}=8-5=3\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{1}{3}\end{matrix}\right.\left(tm\right)\)

1 tháng 7 2024

$2x^2-5xy-3y^2$

$=2x^2-6xy+xy-3y^2$

$=2x(x-3y)+y(x-3y)$

$=(x-3y)(2x+y)$

1 tháng 7 2024

y = (m-2)x+2m-1 (a = m-2 và b=2m-1) 

a) Đề hàm số là hàm số bậc nhất thì:

\(a\ne0\Rightarrow m-2\ne0\Leftrightarrow m\ne2\)

b) y=-2x+3 (a'=-2)

Để (d) song song với (d') thì: 

\(a=a'\\ \Rightarrow m-2=-2\Rightarrow m=0\) 

c) Để (d) cắt (d1) tại một điểm trên trục hoành thì: `y=0`

=> (d1) `y=x-2=0=>x=2` 

\(\left(d\right)y=\left(m-2\right)x+2m-1=0\Rightarrow\left(m-2\right)x=1-2m\Rightarrow x=\dfrac{1-2m}{m-2}\)

Mà: `x=2` nên:

\(2=\dfrac{1-2m}{m-2}\Leftrightarrow2\left(m-2\right)=1-2m\Leftrightarrow2m-4=1-2m\\ \Leftrightarrow2m+2m=1+4=5\\ \Leftrightarrow4m=5\\ \Leftrightarrow m=\dfrac{5}{4}\left(tm\right)\)