K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I là tâm đường tròn nội tiếp tam giác và E là tiếp điểm
nên IE⊥AC, mà A^=90o suy ra IE//AB
⇒ANEI=AMEM
⇒AN=AM.EIEM=AC.EI2(AM−AE)   (1)
Tứ giác AEIF là hình vuông nên AE=EI;
D, E, F là các tiếp điểm
⇒AE+CD+BD=12(BC+CA+AB)⇒AE=AC+AB−BC2,
thay vào (1) ta được ...

9 tháng 10 2021

TL:

BC2 nha bạn 

HT

9 tháng 10 2021

undefined

Hai đường chéo AC,BD cắt nhau tại H .Trong tam giác vuông ABD ,ta có :

\(\frac{HD}{HB}=\frac{AD^2}{AB^2}=\frac{4^2}{6^2}=\frac{4}{6}\)

Dễ thấy \(\Delta HDC~\Delta HBA\)nên 

\(\frac{DC}{AB}=\frac{HD}{HB}\)\(=\frac{4}{9}\)\(\Rightarrow\)\(DC\)=\(\frac{4}{9}.6=\frac{8}{3}\)(Cm)

Kẻ đường cao CK của tam giác ABC , dễ thấy KB = AB - DC = 6 -\(\frac{8}{3}\)=\(\frac{10}{3}\)

\(\Rightarrow\)\(BC=\frac{\sqrt{224}}{3}=\frac{2\sqrt{61}}{3}\left(cm\right)\)

DD
9 tháng 10 2021

\(\left(2x+1\right)\left(x+1\right)\left(3x-2\right)\left(6x-7\right)+4=0\)

\(\Leftrightarrow\left[\left(2x+1\right)\left(3x-2\right)\right]\left[\left(x+1\right)\left(6x-7\right)\right]+4=0\)

\(\Leftrightarrow\left(6x^2-x-2\right)\left(6x^2-x-7\right)+4=0\)

\(\Leftrightarrow\left(6x^2-x\right)^2-9\left(6x^2-x\right)+14+4=0\)

\(\Leftrightarrow\left(6x^2-x\right)^2-6\left(6x^2-x\right)-3\left(6x^2-x\right)+18=0\)

\(\Leftrightarrow\left(6x^2-x-6\right)\left(6x^2-x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}6x^2-x-6=0\\6x^2-x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1\pm\sqrt{145}}{2}\\x=\frac{1\pm\sqrt{73}}{12}\end{cases}}\)

DD
9 tháng 10 2021

Để đồ thị hàm số \(y=\left(2m+2\right)x-5m\)song song với đường thẳng \(y=4x+1\)thì: 

\(\hept{\begin{cases}2m+2=4\\-5m\ne1\end{cases}}\Leftrightarrow m=1\).

DD
9 tháng 10 2021

\(A=\sqrt{5-2\sqrt{6}}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

\(B=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}-1\right|-\left|\sqrt{5}+1\right|\)

\(=\sqrt{5}-1-\left(\sqrt{5}+1\right)=-2\)

8 tháng 10 2021

loading...loading...

 

 

9 tháng 10 2021

a)\(\sqrt{4x+20}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{9x-45}\)=4  ; ĐKXĐ : x ≥_+ 5

⇔ \(\sqrt{2^2x+2^2.5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{3^2x-3^2.5}\) =4

⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)3\(\sqrt{x-5}\) =4 ⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\sqrt{x-5}\) =4⇔2\(\sqrt{x+5}\)=4(tm)

\(\sqrt{x+5}\)=2⇔x+5=4 ⇔x=-1

                                          Vậy x=-1

b) \(\sqrt{x^2-36}\) - \(\sqrt{x-6}\) =0 ; ĐKXĐ: x≥_+6

⇔ \(\sqrt{\left(x-6\right)\left(x+6\right)}\) - \(\sqrt{x-6}\)  =0 ⇔ \(\sqrt{x-6}\).\(\sqrt{x+6}\) - \(\sqrt{x-6}\) =0

⇔ \(\sqrt{x-6}\)(\(\sqrt{x+6}\) -1 )=0 ⇔\([\) \(\begin{matrix}\sqrt{x-6}&=0\\\sqrt{x+6}-1&=0\end{matrix}\) ⇔ \([\) \(\begin{matrix}x-6&=0\\x+6-1&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=6\left(ktm\right)\\x&=-5\left(tm\right)\end{matrix}\)

                                             Vậy x=-5

c) \(\sqrt{4-x^2}\) -x +2 =0 ; ĐKXĐ: -2≤x≤2

⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -x+2 =0  ⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -(x-2)=0

⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) =(x-2) ⇔ (2-x)(2+x)=(x-2)2 ⇔ 4-x2 = x2-4x+4 ⇔ -x2-x2+4x=4-4

        ⇔-2x2+4x=0 ⇔ -2x(x-2)=0 ⇔ \([\) \(\begin{matrix}-2x&=0\\x-2&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=0\left(tm\right)\\x&=2\left(tm\right)\end{matrix}\)

                                          Vậy S=\(\left\{0;2\right\}\)

d) \(\sqrt{\left(2x-3\right)\left(x-1\right)}-\sqrt{x-1}=0\) ; ĐKXĐ: x≥\(\dfrac{3}{2}\);x ≥ 1

\(\sqrt{2x-3}.\sqrt{x-1}-\sqrt{x-1}=0\) ⇔ \(\sqrt{x-1}.\left(\sqrt{2x-3}-1\right)=0\) 

⇔ \(\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-3}-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x-1=0\\2x-3-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

             Vậy s=\(\left\{1:2\right\}\)

 
 

                                                                    

 
 
 
 

 

 

DD
8 tháng 10 2021

Bài I: 

a) Khi \(x=9\)

\(A=\frac{\sqrt{9}+4}{\sqrt{9}-1}=\frac{3+4}{3-1}=\frac{7}{2}\)

b) \(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

c) \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x}-1}\div\frac{1}{\sqrt{x}-1}=\sqrt{x}+4\ge\frac{x}{4}+5\)

\(\Leftrightarrow x-4\sqrt{x}+4\le0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow x=4\).

Câu 17: Cho một tam giác đều ABC có cạnh AB = 8cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AHCâu 18: Cho một tam giác đều ABC có cạnh AB = 12cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AHCâu 19: Cho hình chữ nhật ABCD có AB = 4cm; AD = 3cm. Tính diện...
Đọc tiếp

Câu 17: Cho một tam giác đều ABC có cạnh AB = 8cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AH

Trắc nghiệm Hình cầu. Diện tích mặt cầu và thể tích hình cầu có đáp án

Câu 18: Cho một tam giác đều ABC có cạnh AB = 12cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AH

Trắc nghiệm Hình cầu. Diện tích mặt cầu và thể tích hình cầu có đáp án

Câu 19: Cho hình chữ nhật ABCD có AB = 4cm; AD = 3cm. Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC

Trắc nghiệm Hình cầu. Diện tích mặt cầu và thể tích hình cầu có đáp án

Câu 20: Cho hình chữ nhật ABCD có AB = 8cm; AD = 6cm. Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC

A. 50π  (cm2)                                    

B. 100π  (cm2)               

C. 100 (cm2)                                     

D. 25π  (cm2)

Cảm ơn trc

4

Câu 17 , B

Câu 19 : D

Câu 18 ; C

8 tháng 10 2021

duma toán hình chịu mẹ ơi =.= con ngu hình ... cầu hồn ông ny vô lm đê