Trong các số: 20; 28; 45; 128
Số nào là số hoàn chỉnh ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKĐB $\Rightarrow \frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}$
Áp dụng TCDTSBN:
$\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}$
$=\frac{4(3x-2y)}{16}=\frac{3(2z-4x)}{9}=\frac{2(4y-3z)}{4}$
$=\frac{4(3x-2y)+3(2z-4x)+2(4y-3z)}{16+9+4}$
$=\frac{0}{29}=0$
$\Rightarrow 3x-2y=2z-4x=4y-3z=0$
$\Rightarrow 3x=2y; 4y=3z\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-z}{2+3-4}=\frac{-10}{1}=-10$
$\Rightarrow x=(-10).2=-20; y=3(-10)=-30; z=4(-10)=-40$
giả sử : x = 5k; y = 4k; z = 3k (k là N*)
ta có: \(P=\dfrac{5k+2\left(4k\right)-3\left(3k\right)}{5k-2\left(4k\right)+3\left(3k\right)}=\dfrac{5k+8k-9k}{5k-8k+9k}=\dfrac{4k}{6k}=\dfrac{4}{6}=\dfrac{2}{3}\)
vậy P = \(\dfrac{2}{3}\)
\(\dfrac{\dfrac{5}{7}+\dfrac{5}{9}-\dfrac{5}{11}}{\dfrac{15}{7}+\dfrac{5}{9}-\dfrac{15}{11}}=\dfrac{\dfrac{495}{693}+\dfrac{385}{693}-\dfrac{315}{693}}{\dfrac{1485}{693}+\dfrac{385}{693}-\dfrac{945}{693}}\\ =\dfrac{\dfrac{565}{693}}{\dfrac{925}{693}}=\dfrac{565}{925}=\dfrac{113}{815}\)
a, \(S_{ABC}=\dfrac{1}{2}a.a=\dfrac{a^2}{2}\)
Theo Pytago tam giac ABC vuong tai B
\(AC=\sqrt{a^2+a^2}=\sqrt{2}a\Rightarrow AO=\dfrac{\sqrt{2}a}{2}\)
Theo Pytago tam giac SOA vuong tai O
\(SO=\sqrt{4a^2-\dfrac{2}{4}a^2}=\sqrt{\dfrac{14a^2}{4}}=\sqrt{\dfrac{7}{2}}a\)
\(V_{ABC}=\dfrac{1}{3}.\dfrac{a^2}{2}.\dfrac{\sqrt{7}}{\sqrt{2}}a=\dfrac{a^3\sqrt{7}}{6\sqrt{2}}\)
b, Ta co \(\dfrac{d\left(C;\left(SAB\right)\right)}{d\left(O;\left(SAB\right)\right)}=\dfrac{AC}{OA}=2\Rightarrow d\left(C;\left(SAB\right)\right)=2d\left(O;\left(SAB\right)\right)\)
Ke OH vuong AB, SO vuong AB, SO;OH chua (SOH)
=> AB vuong (SOH)
Ke OK vuong SH => OK la khoang cach
- bn tinh not nhe
c, ((SAB);(ABCD)) = ^SHO
- tinh dc phan b roi ap vao tam giac SHO la ra nhe
Lúc đầu anh trai nhiều hơn em trai số quả bóng là:
13 + 13 = 26 (quả)
Đ/s: 26 quả bóng
a: \(\dfrac{8}{9}=1-\dfrac{1}{9}\)
\(\dfrac{108}{109}=1-\dfrac{1}{109}\)
Vì 9<109 nên \(\dfrac{1}{9}>\dfrac{1}{109}\)
=>\(-\dfrac{1}{9}< -\dfrac{1}{109}\)
=>\(-\dfrac{1}{9}+1< -\dfrac{1}{109}+1\)
=>\(\dfrac{8}{9}< \dfrac{108}{109}\)
b: \(\dfrac{97}{100}=0,97;\dfrac{98}{99}=0,\left(98\right)\)
mà 0,97<0,(98)
nên \(\dfrac{97}{100}< \dfrac{98}{99}\)
c: \(\dfrac{19}{18}=1+\dfrac{1}{18}\)
\(\dfrac{2021}{2020}=1+\dfrac{1}{2020}\)
Vì 18<2020 nên \(\dfrac{1}{18}>\dfrac{1}{2020}\)
=>\(1+\dfrac{1}{18}>1+\dfrac{1}{2020}\)
=>\(\dfrac{19}{18}>\dfrac{2021}{2020}\)
d: \(\dfrac{131}{171}=\dfrac{130+1}{170+1}>\dfrac{130}{170}=\dfrac{13}{17}\)
\(5^{16}:5^{14}+3^2+2000^0\)
\(=5^2+3^2+2000^0\)
\(=25+9+1\)
\(=35\)
\(3^{96}:3^{95}+2.2^3+1^{2024}\)
\(=3^1+2^4+1\)
\(=3+16+1\)
\(=20\)
Số hoàn chỉnh là số có tổng các ước của nó(không kể chính nó) bằng chính nó
Vd: 6;28;...
Tổng các ước của 20 không kể 20 là:
1+2+4+5+10=22>20
=>20 ko là số hoàn chỉnh
Tổng các ước của 28 không kể 28 là:
1+2+4+7+14=28=28
=>28 là số hoàn chỉnh
Tổng các ước của 45 không kể 45 là:
1+3+5+9+15=33<45
=>45 không là số hoàn chỉnh
Tổng các ước của 128 không kể 128 là:
1+2+4+8+16+32+64=127<128
=>128 không là số hoàn chỉnh
28