K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2024

Ta có: \(E=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)

\(3E=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(3E-E=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+..+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)

\(2E=1+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(6E=3+1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

\(4E=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow E=\dfrac{3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}}{4}=\dfrac{3}{4}-\dfrac{\dfrac{100}{3^{99}}+\dfrac{100}{3^{100}}}{4}< \dfrac{3}{4}\) (đpcm)

DT
17 tháng 6 2024

Khi cùng thêm một STN vào cả tử và mẫu số của một phân số thì hiệu giữa chúng luôn không đổi

Hiệu giữa mẫu số và tử số là:

   5 - 3 = 2

Vì phân số mới có giá trị 8/9 Nên coi tử có giá trị 8 phần và mẫu có giá trị 9 phần

Hiệu số phần bằng nhau:

  9 - 8 = 1 (phần)

Tử số mới là:

  2 : 1 x 8 = 16

Số tự nhiên phải tìm là:

  16 - 3 = 13

  Đáp số: 13

17 tháng 6 2024

13

AH
Akai Haruma
Giáo viên
17 tháng 6 2024

Lời giải:

$51:32:72=\frac{51}{32\times 72}=\frac{17\times 3}{32\times 3\times 24}=\frac{17}{32\times 24}=\frac{17}{768}$

19 tháng 9 2024

44444444444444444444444455555555555555555555555555544444444444444444444444445555555555555555555555554444445555555555555555555554444444444455555555555555555554444444444444444444444555555555555555555555444444444444444455555555555555555555544444444444445555555544444445555554444445555545554545454545454545545454545454545454545454545454545454545444444455555544444545444444444444444444444444444444444444444444444455555555555555555555555554444444444444444444444444444444444444444444444444444444555555555555555555555555555555555

a: \(-\dfrac{4}{15}=\dfrac{5}{15}-\dfrac{9}{15}=\dfrac{1}{3}-\dfrac{3}{5}=\dfrac{1}{3}+\left(-\dfrac{3}{5}\right)\)

b: \(\dfrac{-4}{15}=\dfrac{-2\cdot2}{3\cdot5}=\dfrac{-2}{3}\cdot\dfrac{2}{5}\)

c: \(\dfrac{-4}{15}=\dfrac{-2}{3}\cdot\dfrac{2}{5}=\dfrac{-2}{3}:\dfrac{5}{2}\)

DT
17 tháng 6 2024

a) \(-\dfrac{4}{15}=\left(-1\right)+\dfrac{11}{15}\)

b) \(-\dfrac{4}{15}=\left(-\dfrac{2}{3}\right).\dfrac{2}{5}\)

c) \(-\dfrac{4}{15}=\left(-\dfrac{2}{3}\right):\dfrac{5}{2}\)

DT
17 tháng 6 2024

a) \(\dfrac{2}{3}< a-\dfrac{1}{6}< \dfrac{8}{9}\\ \Rightarrow\dfrac{2}{3}+\dfrac{1}{6}< a-\dfrac{1}{6}+\dfrac{1}{6}< \dfrac{8}{9}+\dfrac{1}{6}\\ \dfrac{5}{6}< a< \dfrac{19}{18}\)

Do a là số nguyên nên a=1

b) \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\left(a\ne0\right)\\ \Rightarrow\dfrac{4}{3}< \dfrac{4}{a}< \dfrac{4}{\dfrac{3}{2}}\\ \Rightarrow3>a>1,5\)

Do a là số nguyên nên a=2

a: \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\)

=>\(\dfrac{12}{18}< \dfrac{3\left(a-1\right)}{18}< \dfrac{16}{18}\)

=>12<3(a-1)<16

=>12<3a-3<16

=>15<3a<19

=>\(5< a< \dfrac{19}{3}\)

mà a nguyên

nên a=6

b: \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\)

=>\(\dfrac{24}{18}< \dfrac{24}{6a}< \dfrac{24}{9}\)

=>9<6a<18

mà a nguyên

nên 6a=12

=>a=2

a: \(\dfrac{1}{2}< \dfrac{12}{a}< \dfrac{4}{3}\)

=>\(\dfrac{12}{24}< \dfrac{12}{a}< \dfrac{12}{9}\)

=>9<a<24

mà a nguyên

nên \(a\in\left\{10;11;...;23\right\}\)

b: \(\dfrac{7}{4}< \dfrac{a}{8}< 3\)

=>\(\dfrac{14}{8}< \dfrac{a}{8}< \dfrac{24}{8}\)

=>14<a<24

mà a nguyên

nên \(a\in\left\{15;16;...;23\right\}\)

17 tháng 6 2024

\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}\) và \(x+y+z=17\) (1)

ĐK: \(x\ne-1;y\ne2;z\ne-4\)

Áp dụng tính chất của dãy tỉ số bằng nhau và (1), ta được:

\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}=\dfrac{10}{2z+8}\)

\(=\dfrac{7+3+10}{2x+2+2y-4+2z+8}\)

\(=\dfrac{20}{2\left(x+y+z\right)+6}=\dfrac{20}{2.17+6}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2=2.7=14\\2y-4=2.3=6\\z+4=5.2=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=12\\2y=10\\z=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\left(tm\right)\\y=5\left(tm\right)\\z=6\left(tm\right)\end{matrix}\right.\)

 

a: \(\dfrac{7}{5}>\dfrac{7}{9}\)

=>\(-\dfrac{7}{5}< -\dfrac{7}{9}\)

\(\dfrac{3}{2}=1,5;\dfrac{4}{5}=0,8;\dfrac{9}{11}=0,\left(9\right);-\dfrac{3}{-4}=0,75\)

mà 0<0,75<0,8<0,(9)<1,5

nên \(0< \dfrac{3}{4}< \dfrac{4}{5}< \dfrac{9}{11}< \dfrac{3}{2}\)

=>\(-\dfrac{7}{5}< -\dfrac{7}{9}< 0< \dfrac{-3}{-4}< \dfrac{4}{5}< \dfrac{9}{11}< \dfrac{3}{2}\)

b: \(-\dfrac{11}{12}=-1+\dfrac{1}{12};\dfrac{-3}{4}=-1+\dfrac{1}{4};\dfrac{-18}{19}=-1+\dfrac{1}{19};\dfrac{-4}{5}=-1+\dfrac{1}{5};-\dfrac{25}{26}=-1+\dfrac{1}{26}\) 

=>

Vì 4<5<12<19<26

nên \(\dfrac{1}{4}>\dfrac{1}{5}>\dfrac{1}{12}>\dfrac{1}{19}>\dfrac{1}{26}\)

=>\(\dfrac{1}{4}-1>\dfrac{1}{5}-1>\dfrac{1}{12}-1>\dfrac{1}{19}-1>\dfrac{1}{26}-1\)

=>\(\dfrac{-3}{4}>-\dfrac{4}{5}>\dfrac{-11}{12}>\dfrac{-18}{19}>\dfrac{-25}{26}\)

=>

\(\dfrac{-25}{26}< \dfrac{-18}{19}< \dfrac{-11}{12}< \dfrac{-4}{5}< -\dfrac{3}{4}\)

mà \(\dfrac{-3}{4}< 0< \dfrac{-4}{-5}\)

nên \(-\dfrac{25}{26}< -\dfrac{18}{19}< \dfrac{-11}{12}< -\dfrac{4}{5}< -\dfrac{3}{4}< \dfrac{-4}{-5}\)

DT
17 tháng 6 2024

a) \(\dfrac{1}{2};0;-\dfrac{2}{9};-\dfrac{4}{9};-\dfrac{5}{9};-\dfrac{7}{9};-\dfrac{10}{9}\)

b) \(\dfrac{7}{15};\dfrac{3}{10};0;\dfrac{2}{-5};-\dfrac{3}{4};-\dfrac{5}{6}\)

Giải thích:

b) \(\dfrac{7}{15}=\dfrac{14}{30}>\dfrac{3}{10}=\dfrac{9}{30}\)

\(\dfrac{2}{-5}=-\dfrac{4}{10}=-0,4>-\dfrac{3}{4}=-\dfrac{75}{100}=-0,75\)

\(-\dfrac{3}{4}=-\dfrac{9}{12}>-\dfrac{5}{6}=-\dfrac{10}{12}\)

17 tháng 6 2024

?

 

AH
Akai Haruma
Giáo viên
18 tháng 6 2024

a/

$\frac{97}{100}< \frac{98}{100}< \frac{98}{99}$

b/

$\frac{19}{18}=1+\frac{1}{18}> 1+\frac{1}{2020}=\frac{2021}{2020}$
c/

$\frac{131}{171}=1-\frac{40}{171}> 1-\frac{40}{170}=1-\frac{4}{17}=\frac{13}{17}$
d/

$\frac{51}{61}=1-\frac{10}{61}=1-\frac{100}{610}$

$\frac{515}{616}=1-\frac{101}{616}$

Xét hiệu:

$\frac{100}{610}-\frac{101}{616}=\frac{100.616-101.610}{610.616}$

$=\frac{100(610+6)-101.610}{610.616}$

$=\frac{600-610}{610.616}<0$

$\Rightarrow \frac{100}{610}< \frac{101}{616}$

$\Rightarrow 1-\frac{100}{610}> 1-\frac{101}{616}$

$\Rightarrow \frac{51}{61}> \frac{515}{616}$