K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi mẫu số của các phân số cần tìm là x

(Điều kiện: \(x\ne0\))

Theo đề, ta có: \(\dfrac{-3}{5}< \dfrac{9}{x}< \dfrac{-4}{9}\)

=>\(\dfrac{-36}{60}< \dfrac{-36}{-4x}< \dfrac{-36}{81}\)

=>\(\dfrac{36}{60}>\dfrac{36}{-4x}>\dfrac{36}{81}\)

=>60<-4x<81

=>-15>x>-20,25

=>-20,25<x<-15

Vậy: Các phân số cần tìm có dạng là \(\dfrac{9}{x}\), với điều kiện là -20,25<x<-15

Gọi mẫu của các phân số cần tìm là x

Theo đề, ta có: \(-\dfrac{9}{11}< \dfrac{7}{x}< \dfrac{-9}{13}\)

=>\(\dfrac{-63}{77}< \dfrac{-63}{-9x}< \dfrac{-63}{91}\)

=>\(\dfrac{63}{77}>\dfrac{63}{-9x}>\dfrac{63}{91}\)

=>77<-9x<91

=>\(-\dfrac{77}{9}>x>-\dfrac{91}{9}\)

 

Vậy: Các phân số cần tìm có dạng là \(\dfrac{7}{x}\), với điều kiện là \(-\dfrac{91}{9}< x< -\dfrac{77}{9}\)

DT
20 tháng 6 2024

\(\left(x+\dfrac{3}{5}\right)-\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x+\dfrac{3}{5}-\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{1}{2}\\ \Rightarrow x=\dfrac{10}{30}-\dfrac{18}{30}+\dfrac{15}{30}\\ \Rightarrow x=\dfrac{7}{30}\)

\(\left(x+\dfrac{3}{5}\right)-\dfrac{1}{2}=\dfrac{1}{3}\)

=>\(x=\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{3}{5}=\dfrac{5}{6}-\dfrac{3}{5}=\dfrac{25}{30}-\dfrac{18}{30}=\dfrac{7}{30}\)

\(\dfrac{2}{5}+\left(x-\dfrac{2}{3}\right)=\dfrac{5}{3}\)

=>\(x+\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{5}{3}\)

=>\(x=\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{7}{3}-\dfrac{2}{5}=\dfrac{35}{15}-\dfrac{6}{15}=\dfrac{29}{15}\)

20 tháng 6 2024

\(\dfrac{1}{5}+\dfrac{4}{5}xX=\dfrac{7}{3}\\ \dfrac{4}{5}xX=\dfrac{7}{3}-\dfrac{1}{5}\\ \dfrac{4}{5}xX=\dfrac{32}{15}\\ X=\dfrac{32}{15}:\dfrac{4}{5}\\ \text{X}=\dfrac{8}{3}\)

20 tháng 6 2024

8 phần 3

DT
20 tháng 6 2024

a) \(3^2.5+2^3.10-81:3\\ =9.5+8.10-27\\ =45+80-27=98\)

b) \(5^{13}:5^{10}-25.2^2\\ =5^3-25.4\\ =125-100=25\)

c) \(20:2^2+5^9:5^8\\ =20:4+5^1\\ =5+5=10\)

d) \(100:5^2+7.3^2\\ =100:25+7.9\\ =4+63=67\)

e) \(84:4+3^9:3^7+5^0\\ =21+3^2+1\\ =21+9+1=31\)

20 tháng 6 2024

98

25

10

67

31

`#3107.101107`

\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\\ =\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^8\cdot2^2\cdot5}\\ =\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\\ =\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\\ =\dfrac{-2}{6}=-\dfrac{1}{3}\)

DT
20 tháng 6 2024

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^8.3^8.2^2+6^8.20}\\ =\dfrac{2^{10}.3^8-2.6^9}{\left(2.3\right)^8.2^2+6^8.20}=\dfrac{2^8.3^8.2^2-2.6^9}{6^8.4+6^8.20}\\ =\dfrac{6^8.4-2.6.6^8}{6^8.\left(4+20\right)}=\dfrac{6^8.\left(4-2.6\right)}{6^8.24}\\ =\dfrac{4-12}{24}=\dfrac{-8}{24}=-\dfrac{1}{3}\)

`#3107.101107`

\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}=\dfrac{2^{8+18}}{\left(2^3\right)^5\cdot\left(2^2\right)^6}=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{2^{26}}{2^{15+12}}=\dfrac{2^{26}}{2^{27}}=\dfrac{1}{2}\)

DT
20 tháng 6 2024

\(\dfrac{2^8.2^{18}}{8^5.4^6}=\dfrac{2^{8+18}}{\left(2^3\right)^5.\left(2^2\right)^6}\\ =\dfrac{2^{26}}{2^{15}.2^{12}}=\dfrac{2^{26}}{2^{15+12}}\\ =\dfrac{2^{26}}{2^{27}}=\dfrac{1}{2^1}=\dfrac{1}{2}\)

Bài 3:

a: \(\left\{{}\begin{matrix}4x+y=2\\\dfrac{4}{3}x+\dfrac{1}{3}y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\\dfrac{4}{3}x+\dfrac{1}{3}\left(2-4x\right)=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2-4x\\\dfrac{4}{3}x+\dfrac{2}{3}-\dfrac{4}{3}x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\\dfrac{2}{3}=1\left(vôlý\right)\end{matrix}\right.\)

=>Hệ phương trình vô nghiệm

b: \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x+y\sqrt{2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\sqrt{2}\\2y\sqrt{2}+y\sqrt{2}=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y\sqrt{2}=3\\x=y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\x=\dfrac{y\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}\cdot\sqrt{2}=1\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\sqrt{2}-5x\sqrt{3}\\x\sqrt{6}-\sqrt{2}\left(2\sqrt{2}-5x\sqrt{3}\right)=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\sqrt{6}-4+5x\sqrt{6}=2\\y=2\sqrt{2}-5x\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\sqrt{6}=6\\y=2\sqrt{2}-5\sqrt{3}\cdot x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y=2\sqrt{2}-5\sqrt{3}\cdot\dfrac{\sqrt{6}}{6}=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5x-4\\3x-\left(5x-4\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5x-4\\-2x+4=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=5\cdot\dfrac{-1}{2}-4=-\dfrac{5}{2}-4=-\dfrac{13}{2}\end{matrix}\right.\)