chứng minh rằng với số nguyên n . Ta có A = ( n3 + 11.n ) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
S = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100
3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99
3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )
2S = 1 - 1/3^100
S = (1 - 1/3^100). 1/2
có 2xy +x +y = 7
(2xy + x)+y = 7
x. (2+y)+1.(2+y)=9
(2+y) . (x+1) = 9
Mà x;y E Z =>2+y ; x+1 E Z
=>2+y ; x+1 E ư (9)={1 ; -1 ; 3 ; -3 ; 9 ; -9}
BGT
x+1 | 1 | -1 | 3 | -3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | 0 | -2 | 2 | -4 | 0 | -2 | 8 | -10 | 2 | -4 |
2+y | 3 | -3 | 1 | -1 | 9 | -9 | 1 | -1 | 9 | -9 |
y | 1 | -5 | -1 | -3 | 7 | -11 | -1 | -3 | 7 | -11 |
vậy (x;y)=(0;1) ; (-2;-5) ; (2;-1) ; (-4;-3) ; (0;7) ; (-2;-11) ; (8;-1) ; (-10;-3) ; (2;7) ; (-4;-11)
mik là ng trả lời đầu tiên nên cũng ko chắc lắm nhé bn :>>
2xy + x + y = 7
x(2y + 1) + y = 7
2.[x(2y +1) + y ] = 2.7
2x(2y + 1) + 2y = 14
2x(2y+1) + 2y + 1 = 14 +1
2x(2y+1) + (2y +1) = 15
(2y+1).(2x+1) = 15
Vì x, y thuộc Z nên 2x+1 và 2y+1 là ước của 15
*(mình làm đến đây bạn tự kẻ bảng nhé)
Từ 25 đến 129 có số 30
Do đó chữ số tận cùng của tích là chữ số 0
\(25\rightarrow129\) có số \(30\)
Lấy \(0\) nhân với tận cùng của các số còn lại vẫn bằng \(0\)
Vậy tích các STN từ \(25\) đến \(129\) có chữ số tận cùng là \(0\)
\(7⋮\left(x+1\right)\Rightarrow\left(x+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ Có:x+1=-7\Rightarrow x=-8\\ x+1=-1\Rightarrow x=-2\\ x+1=1\Rightarrow x=0\\ x+1=7\Rightarrow x=6\\ Vậy:x\in\left\{-8;-2;0;6\right\}\)
Ta có:
\(7⋮\left(x+1\right)\Rightarrow x+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau:
\(x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-2\) | \(6\) | \(-8\) |
Vậy \(x\in\left\{0;-2;6;-8\right\}\)
nếu bạn muốn viết một số gì đó mũ một số gì đó thì bạn ghi cơ số trước sau đó ấn vào biểu tượng"x2" rồi ghi số mũ nha
13-2(x+3)=27
→ 2(x+3)=13-27
→ 2(x+3)=-14
→ x+3=-14÷2
→ x+3=-7
→ x=-7-3
→ x=-10
\(13-2\left(x+3\right)=27\)
\(\Rightarrow2\left(x+3\right)=13-27\)
\(\Rightarrow2\left(x+3\right)=-14\)
\(\Rightarrow x+3=-14:2\)
\(\Rightarrow x+3=-7\)
\(\Rightarrow x=-7-3\)
\(\Rightarrow x=-10\)
Vậy \(x=-10\)
Câu 1:
a; \(\dfrac{-9}{4}\) < 0; \(\dfrac{1}{3}\) > o
\(\dfrac{-9}{4}\) < \(\dfrac{1}{3}\)
b; \(\dfrac{-8}{3}\) < - 1
\(\dfrac{4}{-7}\) > - 1
Vậy \(\dfrac{-8}{3}\) < \(\dfrac{4}{-7}\)
c; \(\dfrac{9}{-5}\) < - 1
\(\dfrac{7}{-10}\) > - 1
Vậy \(\dfrac{9}{-5}\) < \(\dfrac{7}{-10}\)
Câu 2:
a; Viết các phân số theo thứ tự tăng dần
\(\dfrac{-1}{2}\); \(\dfrac{2}{7}\); \(\dfrac{2}{5}\)
b; \(\dfrac{-11}{4}\); \(\dfrac{-7}{3}\); \(\dfrac{12}{5}\)
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n