giúp mình lm hai bài cuối với ak. mình cảm ơn trước ạ ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt bth đã cho là A, ta có:
A2=3−√5+3+√5+2√3−√5.√3+√53−5+3+5+23−5.3+5
A2=6+2√(3−√5)(3+√5)6+2(3−5)(3+5)
A2=6+2√9−56+29−5
A2=6+4=10
( Tôi giúp ng ae rồi đấy, ok thì kb nhoa) =33
A=√10
=\(\frac{\sqrt{2}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{3-\sqrt{5}}\right)}{\sqrt{2}}\)
=\(\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}+\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)
=\(\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)
=\(\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{2}}\)
=\(\frac{2\sqrt{5}}{\sqrt{2}}\)
=\(\sqrt{2}\sqrt{5}\)=\(\sqrt{10}\)
Trả lời:
Bài 1:
a, \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}\)
\(=3\sqrt{2}-4\sqrt{3^2.2}+2\sqrt{4^2.2}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}\)
\(=-\sqrt{2}\)
b, \(\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\left|2+\sqrt{5}\right|+\sqrt{5-6\sqrt{5}+9}\)
\(=2+\sqrt{5}+\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.3+3^2}\)
\(=2+\sqrt{5}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(=2+\sqrt{5}+\left|\sqrt{5}-3\right|\)
\(=2+\sqrt{5}+\left(3-\sqrt{5}\right)\)
\(=2+\sqrt{5}+3-\sqrt{5}=5\)
c, \(\frac{2}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1^2}+\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^2-1^2}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{3-1}+\frac{2\left(\sqrt{3}-1\right)}{3-1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}+\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)
Bài 2:
a, \(\sqrt{2x+1}-3=1\left(ĐK:x\ge-\frac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{2x+1}=4\)
\(\Leftrightarrow2x+1=16\)
\(\Leftrightarrow2x=15\)
\(\Leftrightarrow x=\frac{15}{2}\left(tm\right)\)
Vậy x = 15/2
1.3 Giải phương trình:
a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\))
\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
\(\Leftrightarrow2x=2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}\)(tm)
b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)
\(\Leftrightarrow x=13+6\sqrt{5}\)(tm)
c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))
\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)
\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm)
1.4: Phân tích thành nhân tử:
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)