a) 7x –12 = 5x + 3b) 2(3x –5) –7(x + 1) = 2c) (1 –3x)2= (4x –3)2d) (2x + 3)(4x –2) –2(2x + 1)2= 12a) 7x –12 = 5x + 3b) 2(3x –5) –7(x + 1) = 2c) (1 –3x)2= (4x –3)2d) (2x + 3)(4x –2) –2(2x + 1)2= 12a) 7x –12 = 5x + 3b) 2(3x –5) –7(x + 1) = 2c) (1 –3x)2= (4x –3)2d) (2x + 3)(4x –2) –2(2x + 1)2= 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1-1-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1-\frac{x}{2003}+1\)
\(\Leftrightarrow\frac{2-x+2001}{2001}=\frac{1-x+2002}{2002}-\frac{x+2003}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\)
\(\Leftrightarrow x=2003\)
a; \(\Rightarrow6x-8x+3=8\Leftrightarrow-x=5\Leftrightarrow x=-5\)
b, \(\Rightarrow4x-8-6x+9=12x-12\Leftrightarrow14x=13\Leftrightarrow x=\frac{13}{14}\)
c, TH1 : x = 0
TH2 : x + 1 = 0 <=> x = -1
TH3 : x + 3/4 = 0 <=> x = -3/4
d, \(\Leftrightarrow\left(x^2-1\right)\left(2x-1\right)-\left(x^2-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(2x-1-x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-4\right)=0\)
TH1 : x = 1 ; TH2 : x = -2 ; TH3 : x = 4
ta có :
\(\frac{x^2-3x+12}{x-1}=x-2+\frac{10}{x-1}=x-1+\frac{10}{x-1}-1\)
Ta cần điều kiện \(x-1>0\) thì biểu thức mới tồn tại giá trị nhỏ nhất. khi đó
áp dụng bất đẳng thức Cauchy ta có \(x-1+\frac{10}{x-1}-1\ge2\sqrt{10}-1\)
\(x.\left(2x-9\right)=3x.\left(x-5\right)\)
\(\Leftrightarrow2x^2-9x=3x^2-15x\)
\(\Leftrightarrow2x^2-9x-3x^2+15x=0\)
\(\Leftrightarrow-x^2+6x=0\)
\(\Leftrightarrow x.\left(-x+6\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\-x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\-x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy.....
x.(2x−9)=3x.(x−5)x.(2x−9)=3x.(x−5)
⇔2x2−9x=3x2−15x⇔2x2−9x=3x2−15x
⇔2x2−9x−3x2+15x=0⇔2x2−9x−3x2+15x=0
⇔−x2+6x=0⇔−x2+6x=0
⇔x.(−x+6)=0⇔x.(−x+6)=0
⇔{x=0−x+6=0⇔{x=0−x+6=0
⇔{x=0−x=−6⇔{x=0−x=−6
⇔{x=0x=6⇔{x=0x=6
Vậy x=6.
HT
cây hỏi là gì bn ?
câu hỏi đâu bn