K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

 Bạn viết đề bài như thế này thì rất dễ gây ra hiểu nhầm cho người giải đấy. Đề bài trên có thể được hiểu theo rất nhiều cách:

\(3^{2x-1}+2.9^{x+1}=405\)

\(3^{2x}-1+2.9^{x+1}=405\)

hay \(3^{2x-1}+2.9^x+1=405\)

 Nhưng mình nghĩ với cái "thế hình" đề bài này thì mình nghĩ đề bài sẽ là \(3^{2x-1}+2.9^{x+1}=405\)

 Điều này sẽ tương đương \(3^{2x-1}+2.3^{2\left(x+1\right)}=405\)

\(\Leftrightarrow3^{2x-1}+2.3^{2x-1+3}=405\)

\(\Leftrightarrow3^{2x-1}+2.27.3^{2x-1}=405\)

\(\Leftrightarrow55.3^{2x-1}=405\)

\(\Leftrightarrow3^{2x-1}=\dfrac{81}{11}\)

 Đến đây thì mình chịu không thể tìm được \(x\) tự nhiên nào thỏa mãn điều kiện này cả, có lẽ do mình chọn đề bài sai rồi. Nhưng nếu bạn vẫn muốn tìm cho được \(x\) thì mình sẽ làm tiếp như này nhé (bạn tham khảo thôi chứ đừng đem kết quả này ra khoe thầy cô nhé).

\(\Leftrightarrow2x-1=\log_3\dfrac{81}{11}\)

\(\Leftrightarrow x=\dfrac{\log_3\dfrac{81}{11}+1}{2}\) 

 (Xin lỗi bạn nhiều nhưng số này đúng là số \(x\) duy nhất thỏa mãn đề bài như vậy.)

*Nếu bạn muốn đăng câu hỏi mà có chèn thêm công thức toán học vào thì nhấn vào biểu tượng này để viết công thức dễ hiểu hơn nhé.

 

 

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:

$3^{2x-1}+2.9^{x+1}=405$

$3^{2x-1}+2.(3^2)^{x+1}=405$
$3^{2x-1}+2.3^{2x+2}=405$
$3^{2x-1}+2.3^{2x-1}.3^3=405$

$3^{2x-1}+54.3^{2x-1}=405$

$3^{2x-1}.55=405$
$3^{2x-1}=\frac{81}{11}$

Kêt quả sẽ ra số không đẹp lắm. Bạn xem có sai đề không nhỉ?

6 tháng 7 2023

a) 4x⁴.(xⁿ⁻¹ + x - 5)

= 4xⁿ⁺³ + 4x⁵ - 20x⁴

b) 2xⁿ⁻².(14xⁿ⁺¹ - 10x²)

= 28x²ⁿ⁻¹ - 20xⁿ

c) 2ⁿ⁻¹.(xⁿ⁻¹ + 2)

= (2x)ⁿ⁻¹ + 2ⁿ

6 tháng 7 2023

\(S=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{304\cdot307}\)

\(3S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{304\cdot307}\)

\(\)\(3S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{304}-\dfrac{1}{307}\)

\(3S=1-\dfrac{1}{307}\)

\(3S=\dfrac{306}{307}\)

\(S=\dfrac{306}{307}\cdot\dfrac{1}{3}\)

\(S=\dfrac{102}{307}\)

6 tháng 7 2023

\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{304.307}\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}\right)+\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}\right)+...+\dfrac{1}{3}\left(\dfrac{1}{304}-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{304}+\dfrac{1}{304}-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}.\dfrac{306}{307}\)

\(S=\dfrac{102}{307}\)

6 tháng 7 2023

C = 6/2.5 + 6/5.8 + 6/8.11 +...+ 6/29.32
C = 2.(3/2.5 + 3/5.8 + 3/8.11 + ... + 3/29.32)
C = 2.(1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/29 - 1/32)
C = 2.(1/2 - 1/32)
C = 2.15/32
C = 15/16

6 tháng 7 2023

Con cặc

6 tháng 7 2023

\(E=1^2+2^2+3^2+....+59^2\)

\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)

\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)

\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)

Ta đặt :

\(A=1+2+3+...+59\)

Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng

Tổng là \(\left(59+1\right)\times59\div2=1770\) 

=> \(A=1770\) 

Ta đặt

   \(B=1\times2+2\times3+...+58\times59\)

\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)

\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)

\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)

\(3B=58\times59\times57\)

\(B=58\times59\times19\)

\(B=65018\)

=> \(E=A+B\) 

=> \(E=1770+65018\) 

=> \(E=66788\)

 

6 tháng 7 2023

Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:

\(1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\) 

\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).

Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:

\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)

6 tháng 7 2023

a/

\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)

\(=ab-ac-ab-bc+ac-bc=-2bc\)

b/

\(a\left(1-b\right)+a\left(a^2-1\right)=\)

\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)

c/

\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)

\(=ab+bx=b\left(a+x\right)\)

6 tháng 7 2023

Ta đặt

  \(A=1\times3+3\times5+...+61\times63\)

\(6A=1\times3\times6+3\times5\times6+....+61\times63\times6\)

\(6A=1\times3\times6+3\times5\times\left(7-1\right)+...+61\times63\times\left(65-59\right)\)

\(6A=1\times3\times6+3\times5\times7-1\times3\times5+...+61\times63\times65-59\times61\times63\)

\(6A=1\times3\times6-1\times3\times5+61\times63\times65\)

\(6A=3+61\times63\times65\)

\(6A=3\times\left(1+61\times21\times65\right)\)

\(2A=83266\)

\(A=83266\div2=41633\)

`@` `\text {Ans}`

`\downarrow`

`a,`

` F(x)=3x^2-7+5x-6x^2-4x^2+8`

`= (3x^2 - 6x^2 - 4x^2) + 5x + (-7 + 8)`

`= -7x^2 + 5x + 1`

Bậc của đa thức: `2`

`G(x)=x^4+2x-1+2x^4+3x^3+2-x`

`= (x^4 + 2x^4) + 3x^3 + (2x - x) + (-1+2)`

`= 3x^4 + 3x^3 + x + 1`

Bậc của đa thức: `4`

`b,`

`F(x) + G(x) = (-7x^2 + 5x + 1)+(3x^4 + 3x^3 + x + 1)`

`= -7x^2 + 5x + 1+3x^4 + 3x^3 + x + 1`

`= 3x^4 + 3x^3 - 7x^2 + (5x + x) + (1+1)`

`= 3x^4 + 3x^3 - 7x^2 + 6x + 2`

`F(x) - G(x) = (-7x^2 + 5x + 1) - (3x^4 + 3x^3 + x + 1)`

`= -7x^2 + 5x + 1 - 3x^4 - 3x^3 - x - 1`

`= -3x^4 - 3x^3 - 7x^2 + (5x - x) + (1-1)`

`= -3x^4 - 3x^3 - 7x^2 + 4x`

6 tháng 7 2023

a/

\(F\left(x\right)=\left(3-6-4\right)x^2+5x+\left(-7+8\right)=-7x^2+5x+1\) -> Đa thức bậc 2

\(G\left(x\right)=\left(1+2\right)x^4+3x^3+\left(2-1\right)x+\left(-1+2\right)=3x^4+3x^3+x+1\) -> Đa thức bậc 4

b/

\(F\left(x\right)+G\left(x\right)=-7x^2+5x+1+3x^4+3x^3+x+1\\ =3x^4+3x^3-7x^2+6x+2\)

\(F\left(x\right)-G\left(x\right)=-7x^2+5x+1-3x^4-3x^3-x-1\\ =-3x^4-3x^3-7x^2+4x\)