Cho hình chữ nhật ABCD I là điểm chính giữa cạnh AB nối D với I DB cắt CI tại K
b] kẻ IP vuông góc với DB , CQ vuông góc với BD tìm tỉ số diện tích tam giác DIC và diện tích tam giác DIK
a] tìm tỉ số diện tích tam giác DIB và diện tích tam giác DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
14: Gọi số bộ linh kiện trong 1 ngày tổ B lắp được là x(bộ)
(Điều kiện: \(x\in Z^+\))
Số bộ linh kiện trong 1 ngày tổ A lắp được là x+20(bộ)
Trong 5 ngày, tổ A lắp được 5(x+20)(bộ)
Trong 4 ngày, tổ B lắp được 4x(bộ)
Theo đề, ta có phương trình:
5(x+20)+4x=1900
=>9x=1800
=>x=200(nhận)
vậy: số bộ linh kiện trong 1 ngày tổ B lắp được là 200(bộ)
số bộ linh kiện trong 1 ngày tổ A lắp được là 200+20=220(bộ)
Bài 11:
Gọi số trận thắng của Arsenal mùa đó là x(trận)
(Điều kiện: \(x\in Z^+\))
Số trận hòa mùa đó là 38-x(trận)
Số điểm nhận được cho các trận thắng là 3x(điểm)
Số điểm nhận được cho các trận hòa là 1(38-x)=38-x(điểm)
Tổng số điểm là 90 điểm nên ta có:
3x+38-x=90
=>2x=90-38=52
=>x=26(nhận)
Vậy: Số trận thắng mùa đó của Arsenal là 26 trận
Số học sinh xếp loại trung bình của khối 4 trường đó là :
\(72:4=18\) ( học sinh )
Số học sinh khá và giỏi của khối 4 trường đó là :
\(72-18=54\) ( học sinh )
Đáp số : 54 học sinh
a) Gọi phân số đó có dạng `a/b`
Khi đó ta cộng vào tử một số bằng với mẫu ta có:
\(\dfrac{a+b}{b}=\dfrac{a}{b}+\dfrac{b}{b}=\dfrac{a}{b}+1\)
Vậy phân số sẽ tăng lên 1 đơn vị
b) Gọi phân số đó có dạng `a/b`
Khi đó ta cộng vào từ một số bằng với tử số ta có:
\(\dfrac{a+a}{b}=\dfrac{2\times a}{b}=2\times\dfrac{a}{b}\)
Vậy phân số đó sẽ tăng lên gấp đôi
a. Giá trị một phân số sẽ được cộng thêm 1 đơn vị nếu ta thêm vào tử số một số bằng mẫu số và giữ nguyên mẫu số.
VD: Với phân số \(\dfrac{a}{b}\) thì: \(\dfrac{a+b}{b}=\dfrac{a}{b}+1\) (\(b\ne0\))
b. Giá trị một phân số sẽ được nhân đôi nếu ta thêm vào tử số một số bằng tử số và giữ nguyên mẫu số.
VD: Với phân số \(\dfrac{a}{b}\) thì: \(\dfrac{a+a}{b}=\dfrac{a\times2}{b}=\dfrac{a}{b}\times2\) (\(b\ne0\))
\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)
Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\)
\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)
\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)
\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)
Vậy: ...
Ta có :
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)
\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)
\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)
Vậy \(B>\dfrac{1}{2}\)
8. Ta có:
\(x=\dfrac{2a-1}{a}=\dfrac{2a}{a}-\dfrac{1}{a}=2-\dfrac{1}{a}\)
Vì 2 ∈ Z nên x thuộc Z khi \(\dfrac{1}{a}\) thuộc Z
⇒ 1 ⋮ a ⇒ a ∈ Ư(1) = {1; -1}
Vậy: ...
Phân số \(\dfrac{342}{343}\) là phân số tối giản có dạng thập phân là 0,99708...
tối giản đâu:
\(\dfrac{342}{343}=\dfrac{171}{172}\)
thay thế cho 343:2=171(dư 1)
thập phân là:0,99708