Tìm các số tự nhiên x,n và các số nguyên tố p,q biết
a, pq+13;5p+q là số nguyên tố
b, (x^2+4x+32).(x+4)=p^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$24:27=-16:x$
$-16:x=\frac{8}{9}$
$x=-16: \frac{8}{9}=\frac{-16\times 9}{8}=-18$
Ta có:
24 : 27 = - 16 : x
- 16 : x = 24 : 27
- 16 : x = 24/ 27
- 16/ x = 24/ 27
- 16/ x = 8/ 9
- 16/ x = 16/ 18
=> x = 18
a.
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(\Rightarrow x^2=4.9\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=6\end{matrix}\right.\)
b.
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=3^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(x^2=4.9\)
\(x^2=36\)
\(x^2=6^2\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(---------\)
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\left(x+1\right)^2=3.3=3^2\)
\(\Rightarrow\left(1\right):x+1=3\)
\(x=3-1\Rightarrow x=2.\)
\(\Rightarrow\left(2\right):x+1=-3\)
\(x=-3-1\Rightarrow x=-4\)
Từ \(\left(1\right)\) và \(\left(2\right)\), ta suy ra:
\(\Rightarrow x\in\left\{{}\begin{matrix}2\\-4\end{matrix}\right.\)
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Mỗi tam giác có 3 cạnh mỗi cạnh chính là một đoạn thẳng \(\Rightarrow\)n-1 = 36 .3 = 108 \(\Rightarrow\)n= 108+1=109
Vậy có 109 đoạn thẳng
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)
a.
Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ
TH1: p chẵn và q lẻ \(\Rightarrow p=2\)
Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố
- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)
- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)
Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)
Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)
TH2: p lẻ và q chẵn \(\Rightarrow q=2\)
Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố
- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)
- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)
Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)
Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)
Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu
b.
x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)
Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)
\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)
Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên
\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên
\(\Rightarrow x+4=Ư\left(32\right)\)
Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)
\(\Rightarrow x=\left\{0;4;12;28\right\}\)
Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)
- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)
- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)
- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)
Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)