K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

(Hơi dài, mình nói sơ sơ thôi nha. Cái hình thì bạn tự vẽ nha.)

Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và vẽ đường kính \(AK\) của đường tròn này.

Dễ thấy \(K,H,M\) thẳng hàng và \(BKCH\) là hình bình hành.

Bây giờ vẽ \(AF\) cắt \(\left(O\right)\) tại \(L\).

Do các tứ giác \(ALBC,DEBC\) nội tiếp nên CM được \(FA.FL=FB.FC=FD.FE\).

Và suy ra được \(ALED\) nội tiếp.

Nhận thấy \(AED\) nội tiếp trong đường tròn đường kính \(AH\) nên \(AL⊥LH\).

Mà \(AL⊥LK\) do \(AK\) là đường kính. Vậy \(L,H,K,M\) thẳng hàng.

Tam giác \(AFM\) có đường cao \(AD\) và \(ML\) cắt nhau tại \(H\) nên \(FH⊥AM\).

20 tháng 5 2024

loading...

23 tháng 1 2017

\(\sqrt{9}=3\)

\(\sqrt{64}=8\)

\(\sqrt{49}=7\)

\(\sqrt{36}=6\)

\(\sqrt{25}=5\)

\(\sqrt{100}=10\)

23 tháng 1 2017

\(\sqrt{9}=3\)                  \(\sqrt{25}=5\)

\(\sqrt{64}=8\)                        \(\sqrt{100}=10\)

\(\sqrt{49}=7\)

\(\sqrt{36}=6\)

23 tháng 1 2017

ta dùng phương pháp phản chứng để giải 
giả sử căn7 không phải là số vô tỉ => căn 7 là số hữu tỉ 
=> căn7 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b) 
=> a^2/b^2=7 
=> a^2 =7b^2 
vì a, b là hai so nguyen to cung nhau nên để a^2=7b^2 thì a^2 phải chia het cho 7 
ma 7 la so nguyen tố => a chia het cho 7 => a có dạng a=7k 
ta lại có: a^2=7b^2 => 49k^2 =7b^2 => b^2=7k^2 tương tự ta => b chia hết cho 7 
ta có a và b đều chia het cho 7 trái với giả thiết a, b la hai so nguyen to cung nhau 
=> ta có đpcm

24 tháng 1 2017

TA  có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)

Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)

\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)

\(\ge abc+abc+abc-3abc=0\)