Cho hình thang ABCD có AB//CD,AB=4cm,CD=16cm,BD=8cm. Cm góc BAD= góc DBC và BC=2 lần AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.
a)c/m AEBM là hinhhình thoi
b)gọi I là ttung đ của AM.c/m EIC thẳng hàng
c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình
Cụ thể như sau:
Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)
Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)=S(ACB)S(ANB), nghĩa là có câu a.
Mà có câu a thì có câu b

\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36x-216+36x+216=4,5x^2-162\)
( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)
\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(4,5x^2+72x-162=0\)
\(4,5x^2-9x+81x-162=0\)
\(4,5\left(x-2\right)+81\left(x-2\right)=0\)
\(\left(x-2\right)\left(4,5x-81\right)=0\)
\(\left(x-2\right)4,5\left(x-18\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)

a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
Ta có ABDB=48=12ABDB=48=12
BDDC=816=12BDDC=816=12
Xét ∆ABD và ∆BDC
Ta có:
Góc ABD = góc BDC (so le trong - AB//CD)
ABDB=BDDCABDB=BDDC (chứng minh trên)
=> ∆ABD đồng dạng ∆BDC (cạnh-góc-cạnh)
=> ABBD=ADBC=12ABBD=ADBC=12
=> BC = 2AD (điều phải chứng minh)