K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O y x A B C D I

a, Xét tam giác OAD và tam giác OCB có : 

OA = AC (gt) 

OD = OB ( gt) 

DOB là góc chung 

=> tam giác OAD = tam giác OCB ( c . g . c) 

b, Xét tam giác OID và tam giác OIB có : 

OD = OB  (gt) 

OI là cạnh chung 

ID = IB (gt) 

=> tam giác OID = tam giác OIB ( c . c . c ) 

=> OI Là tia pg xOy 

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 29 / 12 / 2018Ngày nộp : 15 / 1 / 2019Ngày trao thưởng : 20/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi: ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

\(\sqrt{x^2+4x+5}=1\)

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

15
27 tháng 12 2018

Câu 1 :

\(\sqrt{x^2+4x+5}=1\)

\(\left(\sqrt{x^2+4x+5}\right)^2=1^2\)

\(x^2+4x+5=1\)

\(x^2+4x=-4\)

\(x\left(x+4\right)=-4\)

Xét bảng :

x1-12-24-4
x+4-44-22-11
x11-12-24-4
x2-80-6-2-5-3

Xét thấy chỉ có x = -2 và x + 4 = 2 thì x1 = x2 = -2 => chọn

Các trường hợp còn lại loại vì nghiệm của x1 và x2 phải bằng nhau

Vậy x = -2

xét tam giác BAE và tam giác BME xcos 

    BA=BM (gt)

    góc BAE =góc MEB (gt)

BE cạnh chung 

VẬY tam giác BAE=tam giác BME (c_g_c)

b)  ta có tam giác BAE=tam giác BME

=> góc BMA=góc BME=90 độ(đpcm)

27 tháng 12 2018

24 - 16(x - 1/2) = 23

=> 16(x - 1/2) = 24 - 23

=> 16(x - 1/2) = 1

=> x - 1/2 = 1/16

=> x = 1/16 + 1/2

=> x = 9/16

27 tháng 12 2018

\(24-16(x-\frac{1}{2})=23\)

\(16(x-\frac{1}{2})=24-23\)

\(16(x-\frac{1}{2})=1\)

\(x-\frac{1}{2}=\frac{1}{16}\)

\(x=\frac{1}{16}+\frac{1}{2}\)

\(x=\frac{9}{16}\)

Vậy số thực x cần tìm là \(\frac{9}{16}\)

Chúc bạn hok tốt ~

28 tháng 12 2018

Tổng số HS của cả lớp : 11 + 14 + 25 = 50 ( hs ) 

Tỉ lệ % HS giỏi : 11 x 100 : 50 = 22 %

Tỉ lệ % HS khá : 14 x 100 : 50 = 28% 

Tỉ lệ % HS trung bình : 25 x 100 : 50 = 50% 

a: Xét ΔABD và ΔAED có

AB=AE
góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có

góc DBH=góc DEC

DB=DE

góc BDH=góc EDC

Do đó: ΔDBH=ΔDEC

c: Ta có: ΔDBH=ΔDEC

nên góc DHB=góc DCE

d: Ta có: AH=AB+BH

AC=AE+EC

mà AB=AE; BH=EC

nên AH=AC

27 tháng 12 2018

Toàn số lớn!