K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
22 tháng 6 2024

\(B=\dfrac{A.\left(x+16\right)}{5}\left(x\ge0\right)\\ =\dfrac{5}{3+\sqrt{x}}.\dfrac{x+16}{5}=\dfrac{x+16}{\sqrt{x}+3}\\ =\dfrac{x-9}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}\\ =\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ =\left(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\right)-6\)

\(\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}-6=2\sqrt{25}-6=4\) (Áp dụng BĐT Cô Si. Do \(\sqrt{x}+3,\dfrac{25}{\sqrt{x}+3}>0\forall x\inĐK\))

Dấu = xảy ra khi: \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Rightarrow\sqrt{x}+3=5\) 

\(\Leftrightarrow x=4\left(TMDK\right)\)

Vậy GTNN B là: 4 tại x=4

 

22 tháng 6 2024

\(-\dfrac{25}{20}>0\)

\(\dfrac{20}{25}>0\)

\(\Rightarrow-\dfrac{25}{20}< \dfrac{20}{25}\)

22 tháng 6 2024

\(x^4+1997x^2+1996x+1997\)

\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(1997x^2+1997x+1997\right)\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2024

Lời giải:

Đặt $M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}$

Với $a,b,c$ nguyên dương thì:

$M=\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}> \frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}=\frac{a+b+c}{a+b+c}=1(*)$
Lại có:

Xét hiệu $\frac{b}{a+b}-\frac{b+c}{a+b+c}=\frac{b(a+b+c)-(a+b)(b+c)}{(a+b)(a+b+c)}$

$=\frac{-b^2}{(a+b)(a+b+c)}<0$ với mọi $a,b,c$ nguyên dương.

$\Rightarrow \frac{b}{a+b}< \frac{b+c}{a+b+c}$
Tương tự: 

$\frac{c}{b+c}< \frac{c+a}{b+c+a}$

$\frac{a}{c+a}< \frac{a+b}{c+a+b}$
$\Rightarrow M< \frac{b+c}{a+b+c}+\frac{c+a}{b+c+a}+\frac{a+b}{c+a+b}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$

Do đó $M$ không phải số nguyên.

 

AH
Akai Haruma
Giáo viên
22 tháng 6 2024

Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

a\(\)\(K=1-5+5^2-5^3+...+5^{100}\)

=>\(5K=5-5^2+5^3-5^4+...+5^{101}\)

=>\(5K+K=5-5^2+5^3-5^4+...+5^{101}+1-5+5^2-5^3+...+5^{100}\)

=>\(6K=5^{101}+1\)

=>\(K=\dfrac{5^{101}+1}{6}\)

b: \(5^{101}\) chia 6 sẽ dư 5 bởi vì \(5^{101}+1⋮6\) và 1+5=6

22 tháng 6 2024

Vậy giá trị của PPP222 trong trường hợp có nghiệm a=1a = 1a=1, b=1b = 1b=1, c=0c = 0c=0.

\(\dfrac{x}{7}+\dfrac{2}{y}=\dfrac{-1}{15}\)

=>\(\dfrac{xy+14}{7y}=\dfrac{-1}{15}\)

=>\(15\left(xy+14\right)+7y=0\)

=>\(15xy+7y=-210\)

=>y(15x+7)=-210

mà 15x+7 chia 15 dư 7

nên \(\left(15x+7;y\right)\in\left\{\left(7;-30\right)\right\}\)

=>\(\left(x;y\right)\in\left(0;-30\right)\)

22 tháng 6 2024

help me pls:(

22 tháng 6 2024

a) \(x-\dfrac{3}{5}=\dfrac{2}{7}\)

\(\Rightarrow x=\dfrac{2}{7}+\dfrac{3}{5}\)

\(\Rightarrow x=\dfrac{10}{35}+\dfrac{21}{35}\)

\(\Rightarrow x=\dfrac{31}{35}\)

b) \(x+\dfrac{20}{11\cdot13}+\dfrac{20}{13\cdot15}+...+\dfrac{20}{53\cdot55}=\dfrac{3}{11}\)

\(\Rightarrow x+10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)

\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Rightarrow x+10\left(\dfrac{1}{11}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)

\(\Rightarrow x+10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)

\(\Rightarrow x+\dfrac{40}{55}=\dfrac{3}{11}\)

\(\Rightarrow x=\dfrac{3}{11}-\dfrac{40}{55}\)

\(\Rightarrow x=\dfrac{-25}{55}=\dfrac{-5}{11}\)

22 tháng 6 2024

a) 

\(\dfrac{4}{5}-\left(\dfrac{-2}{3}\right)-\dfrac{1}{10}-\dfrac{2}{3}\\ =\dfrac{4}{5}+\dfrac{2}{3}-\dfrac{1}{10}-\dfrac{2}{3}\\ =\left(\dfrac{4}{5}-\dfrac{1}{10}\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)\\ =\dfrac{7}{10}+0\\ =\dfrac{7}{10}\)  

b) 

\(\dfrac{1}{3}-\dfrac{-1}{2}+\dfrac{1}{13}-\dfrac{5}{6}\\ =\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\dfrac{1}{13}-\dfrac{5}{6}\\ =\dfrac{5}{6}+\dfrac{1}{13}-\dfrac{5}{6}\\ =\dfrac{1}{13}\) 

c) 

\(\dfrac{-5}{12}-\left(\dfrac{-5}{6}-\dfrac{5}{12}\right)\\ =\dfrac{-5}{12}+\dfrac{5}{6}+\dfrac{5}{12}\\ =\left(-\dfrac{5}{12}+\dfrac{5}{12}\right)+\dfrac{5}{6}\\ =\dfrac{5}{6}\)

22 tháng 6 2024

Ta có :

\(\dfrac{1300}{1500}=\dfrac{13}{15}=1-\dfrac{2}{15}\)

\(\dfrac{1333}{1555}=1-\dfrac{222}{1555}\)

Vì \(\dfrac{222}{1555}>\dfrac{2}{15}\)

\(\Rightarrow1-\dfrac{222}{1555}< 1-\dfrac{2}{15}\)

\(\dfrac{\Rightarrow1333}{1555}< \dfrac{1300}{1500}\)

22 tháng 6 2024

hi