Bài 7: Xác định hệ số a,b,c để có đẳng thức:
a) x^4-2x^3+2x^2-2x+a=(x^2-2x+)(x^2+bx+c)
b) x^3+3x^2-x-3=(x-2)(x^2+bx+c)+a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tiền tiền lớp 5D thu được từ việc bán giấy vụn là \(x\) (đồng)
Ta có:
Trung bình cộng số tiền của bốn lớp là:
\(\dfrac{67000+84000+78000+x}{4}=\dfrac{229000}{4}+\dfrac{x}{4}=57250+\dfrac{x}{4}\)(đồng)
Số tiền lớp 5D thu được là:
\(x=57250+\dfrac{x}{4}+11000=68250+\dfrac{x}{4}\) (đồng)
Suy ra: \(x-\dfrac{x}{4}=68250\)
\(\dfrac{3}{4}x=68250\)
\(x=68250:\dfrac{3}{4}\)
\(x=91000\)
Vậy số tiền lớp 5D thu được là 91000 đồng
ĐKXĐ: \(x\ne\pm\dfrac{1}{2}\)
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
\(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{-32x^2}{12\left(2x-1\right)\left(2x+1\right)}=\dfrac{8x\left(2x+1\right)}{12\left(2x-1\right)\left(2x+1\right)}-\dfrac{3\left(1+8x\right)\left(2x-1\right)}{12\left(2x-1\right)\left(2x+1\right)}\)
\(\Rightarrow-32x^2=16x^2+8x-3\left(16x^2-6x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-48x^2+18x+3\)
\(\Leftrightarrow-32x^2=-32x^2+26x+3\)
\(\Leftrightarrow26x+3=0\)
\(\Leftrightarrow26x=-3\)
\(\Leftrightarrow x=-\dfrac{3}{26}\) (tmđk)
$Toru$
100 - (200 - 100) - 120 + 120 + 1
= 100 - 100 + (120 - 120) + 1
= 0 + 0 + 1
= 1
a) Chu vi của miếng bánh là:
\(\dfrac{5x}{2}+8x+4y^2=\dfrac{5x+16x}{2}+4y^2=\dfrac{21x+8y^2}{2}\)
b) Chu vi của miếng bánh là:
\(\dfrac{21\cdot4+8\cdot3^2}{2}=78\left(cm\right)\)
c) Chu vi của miếng bánh là:
\(\dfrac{21\cdot1,5+8\cdot2,34^2}{2}=37,6524\left(cm\right)\)
d) Diện tích của miếng bánh là:
\(\dfrac{1}{2}\cdot8x\cdot\left(2,5x+1\right)=4x\left(2,5x+1\right)=10x^2+4x\)
a) \(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\) (sửa đề)
\(\Leftrightarrow x^2\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+a-1=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x^2+1\right)+a-1=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b=0\\c=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c=1\\b=0\end{matrix}\right.\)
b) \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^3-2x^2+5x^2-10x+9x-18+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^2\left(x-2\right)+5x\left(x-2\right)+9\left(x-2\right)+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+9\right)+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Rightarrow\left\{{}\begin{matrix}a=15\\b=5\\c=9\end{matrix}\right.\)
#$\mathtt{Toru}$