Câu 1 : Tìm x , biết :
\(|x^2+|x+1||\)=x2+ 5
Câu 2 :
a) Tìm số hữu tỉ x,y với x,y khác 0 , thỏa mãn : x+y=x.y=x:y
b)Cho 4 số tự nhiên a,b,c,d khác 0 thỏa mãn : a2+b2=c2+d2 . Chứng minh : a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠn đổi ra phân số chi thành 2 trường hợp rùi làm thôi
Ta có:
\(+)\frac{1}{301}>\frac{1}{300}\)
\(+)\frac{1}{302}< \frac{1}{300}\)
..................................
\(+)\frac{1}{400}< \frac{1}{300}\)
Suy ra \(\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}< \frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{1}{300}.100=\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}< \frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}< 1\)
hay \(A< 1\)
Vậy \(A< 1\)
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6