1 + 1 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\sqrt{x-1}+\sqrt{9-x}\)
DK:\(1\le x\le9\)
\(S^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\)
\(S^2=\left(x-1\right)+\left(9-x\right)+2\sqrt{\left(x-1\right)\left(9-x\right)}\)
\(=8+2\sqrt{\left(x-1\right)\left(9-x\right)}\)
\(\le8+\left(x-1\right)+\left(9-x\right)\)(BDT AM-GM)
\(=8+8=16\Rightarrow S^2\le16\Rightarrow S\le4\)
1.
a) \(a=1;b=2\left(\sqrt{3}+1\right);c=2\sqrt{3}\)
\(\Delta=b^2-4ac\)
\(=\left[2\left(\sqrt{3}+1\right)\right]^2-4.1.2\sqrt{3}\)
\(=4\left(3+2\sqrt{3}+1\right)-8\sqrt{3}\)
\(=12+8\sqrt{3}+4-8\sqrt{3}\)
\(=16>0\)
\(\left(\sqrt{\Delta}=\sqrt{16}=4\right)\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-2\left(\sqrt{3}+1\right)+4}{2.1}=1-\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-2\left(\sqrt{3}+1\right)-4}{2.1}=-3-\sqrt{3}\)
Vậy: ...
=2nhe bn
băng 2 đấy!