cho hình thang ABCD, đáy lớn CD . hai đường chéo AC và BD cắt nhau tại O , biết diện tích tam giác COD là 1996 cm vuông , diện tam giác AOB là 499 cm vuông .Tính hình thang ABCD?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lại có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge2\)Tương tự \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{b}{a}+\frac{b}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{x+2}{x+1}-\frac{3}{2-x}=\frac{-3}{\left(x+1\right)\left(x-2\right)}+2\)(1)
ĐKXĐ : \(x\ne-1;x\ne\pm2\)
Quy đồng và khử mẫu phương trình (1) , ta được :
\(\left(x+2\right)\left(2-x\right)\left(x-2\right)-3\left(x+1\right)\left(x-2\right)=-3\left(2-x\right)+2\left(x+1\right)\left(x-2\right)\left(2-x\right)\)
\(\Leftrightarrow-\left(x+2\right)\left(x-2\right)^2-3\left(x^2-x-2\right)=-6+3x-2\left(x+1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow-\left(x-2\right)\left(x^2-4\right)-3x^2+3x+6=-6+3x-2\left(x^3-3x^2+4\right)\)
\(\Leftrightarrow-x^3+2x^2+4x-8-3x^2+3x+6=-6+3x-2x^3+6x^2-8\)
\(\Leftrightarrow-x^3-x^2+7x-2+6-3x+2x^3-6x^2+8=0\)
\(\Leftrightarrow x^3-7x^2+4x+12=0\)
\(\Leftrightarrow x^3-2x^2-5x^2+10x-6x+12=0\)
\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x\left(x+1\right)-6\left(x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=2\)(loại) ; \(x=6\)(chọn ) ; \(x=-1\)(loại).
Vậy S={6}.
Ta có:
\(4a^2+3ab-11b^2=4a^2+4ab-11ab-11b^2+10ab\)
\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)
\(=\left(4a-11b\right)\left(a+b\right)+10⋮5\)
\(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)
* \(a+b⋮5\Rightarrow a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(1\right)\)
* \(4a-11b⋮5\Rightarrow4a-11b=5a-10b-a+b\)
Vì \(5a-10b⋮5\Rightarrow a-b⋮5\)
\(a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(a^4-b^4⋮5\left(đpcm\right)\)