Đa thức dư trong phép chia đa thức \(x+x^3+x^9+x^{27}+x^{81}+x^{243}\) cho đa thức \(x^2-1\)
là ax+b khi đó a+b=?
Giải chi tiết hộ mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 nghiệm đối nhau khi tổng của chúng = 0
<=> (2K-1)/2 = 0
<=> 2K-1 = 0
<=> K = \(\frac{1}{2}\)
Mình gửi lời kết bạn với bạn rồi đó! Nhớ xác nhận giùm mình nha! Cảm ơn bạn!
Mình gởi lời mời rồi
Chúc bạn học giỏi
Ai không k mình là chó nha
minhfko phải bn trai
mà bn ấy là ai
nhé
đố các 5+5_5+r5=khvdfvđb
là cái gì
Theo đề bài ta có:
f(x) = x + x3 + x9 + x27 + x81 + x243 = Q(x).(x2 - 1) + ax + b
Thế f(1), f(-1) ta có hệ:
\(\hept{\begin{cases}a+b=6\\-a+b=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=0\end{cases}}\)
Vậy a + b = 6