K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

\(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3\right]^2.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3.\frac{25}{4}\right]^2\)

\(=\left[\frac{8}{125}.\frac{25}{4}\right]^2\)

\(=\left(\frac{2}{5}\right)^2\)

\(=\frac{4}{25}\)

27 tháng 1 2019

\(15\frac{1}{5}:\left(\frac{-5}{7}\right)-25\frac{1}{5}.\left(\frac{-7}{5}\right)\)

\(=15\frac{1}{5}.\frac{-7}{5}-25\frac{1}{5}.\frac{-7}{5}\)

\(=\frac{-7}{5}\left(15\frac{1}{5}-25\frac{1}{5}\right)\)

\(=\frac{-7}{5}.\left(-10\right)\)

\(=14\)

27 tháng 1 2019

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

tu xet bang

27 tháng 1 2019

tớ có cách khác:))

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)

\(\Rightarrow\frac{40+2xy}{8x}=\frac{x}{8x}\)

\(\Rightarrow40+2xy=x\)

\(\Rightarrow40=x\left(1-2y\right)\)

Cách này xem cho vui nha.dài hơn cách của Phương Uyên.

27 tháng 1 2019

Bạn ơi cho mình hỏi kiến thức được sử dụng trong bài dừng ở đâu

27 tháng 1 2019

Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)

Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)

Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)

Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi : 

\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)

Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :

\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)

\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)

27 tháng 1 2019

Các phân thức đã được quy đồng mẫu từ các phân thức \(\frac{150}{\text{t}};\frac{2a}{\frac{1}{2}mn}\text{ và }\frac{\left(p-q\right)\cdot2}{xyz}\) là :

\(\frac{75\cdot mn\cdot xyz}{\text{t}\cdot\frac{1}{2}mn\cdot xyz};\frac{2a\cdot\text{t}\cdot xyz}{\text{t}\cdot\frac{1}{2}mn\cdot xyz}\text{ và }\frac{\left(p-q\right)\cdot mn\cdot\text{t}}{\text{t}\cdot\frac{1}{2}mn\cdot xyz}\).

27 tháng 1 2019

Sửa lại : \(\frac{150}{\text{t}};\frac{2a}{\frac{1}{2}mn}\text{ và }\frac{\left(p-q\right)\cdot2}{xyz}\).

27 tháng 1 2019

tu ve hinh : 

Xet tamgiac MAC va tamgiac MBN co : 

goc AMC = goc BMN (doi dinh)

AM = BM do M la trung diem cua AB (gt)

CM = MN (gt) 

=> Tamgiac MAC = tamgiac MBN (c - g - c) 

=> goc CAM = goc MBN

ma goc A = 90 do

=> goc MBN = 90 do

=> BN | AB

b, chung minh tuong tu cau a

27 tháng 1 2019

ve hinh r chung minh theo truong hop 2 cgv

27 tháng 1 2019

Hình bạn tự vẽ

a) CMR: AH = AK:

Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:

AB = AC ( vì tam giác ABC cân tại A )

góc A chung

Do đó: tam giác AHB = tam giác AKC ( ch-gn )

Suy ra: AH = AK ( 2 cạnh tương ứng)

b) CMR: góc KAI = góc HAI:

Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:

AH = AK ( chứng minh câu a )

cạnh AI chung

Do đó: tam giác KAI = tam giác HAI ( ch-cgv)

suy ra: góc KAI = góc HAI ( 2 góc tương ứng )

c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )

Xét tam giác BAM và tam giác CAM, có:

cạnh AM chung

AB = AC ( vì tam giác ABC cân tại A )

góc KAI = góc HAI ( chứng minh câu b )

do đó: tam giác BAM = tam giác CAM ( c-g-c)

suy ra: góc AMB = góc AMC ( 2 góc tương ứng )

ta có: góc AMB + góc AMC = 180 độ ( kề bù )

 hay 2. góc AMB = 180 độ

=> 180 độ : 2 = 90 độ

do đó: AM vuông góc BC tại M ( đpcm )

Câu d mình làm sau do máy mình hết pin rồi!