K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

31 tháng 1 2018

B B C C A A M M K K H H I I P P Q Q T T

a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.

Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.

b) Gọi  T là giao điểm của MI với AB.

Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\)  (Hai góc nội tiếp)

Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)

Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)

\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)

Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)

Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)

8 tháng 4 2017

888 hhhh

8 tháng 4 2017

ủng hộ mk nha mọi người

8 tháng 4 2017
a/ Phương trình hoành độ giao điểm y=x^2 và y=x+2 =>x^2=x+2 <=>x^2-x-2=0 denta=1-4*(-2)=9 x1=2=>y=4(2;4) x2=-1=>y=1(-1;1) M(0,5;2,5)
8 tháng 4 2017

a)\(x^4-8x^2+x+12=0\)

\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x-4x^2+4x+12=0\)

\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)-4\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\\x^2+x-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-1\right)^2-\left(-4\left(1\cdot3\right)\right)=13\\\Delta\left(2\right)=1^2-\left(-4\left(1\cdot4\right)\right)=17\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{1\pm\sqrt{13}}{2}\\x_{1,2}=\frac{-1\pm\sqrt{17}}{2}\end{cases}}\)

b)\(x^4+5x^3-10x^2+10x+4=0\)

\(\Leftrightarrow x^4-2x^3+2x^2+7x^3-14x^2+14x+2x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x^2-2x+2\right)+7x\left(x^2-2x+2\right)+2\left(x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+7x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+2=0\\x^2+7x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-2\right)^2-4\cdot1\cdot2=-4< 0\left(loai\right)\\\Delta\left(2\right)=7^2-4\cdot1\cdot2=41\end{cases}}\)\(\Rightarrow x_{1,2}=\frac{-7\pm\sqrt{41}}{2}\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn