có 3 khí A,B,C đốt cháy 1 thể tích khí A tạo ra 1 thể tích kí B và 2 thể tích kí C . kí C đc sinh ra ki nug nóng S với H2SO4 đặc B là 1 oxit có KL oxi gấp 2,67 lần KL cũa ng tố tạo oxit . xác định các chất A.B.C và vít PT pứ HH của mỗi ki cho mỗi B & C dẫn wa dd Na2Co3..
có ajj giỏi HÓA 9 giúp jùm tui !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)
Xong
![](https://rs.olm.vn/images/avt/0.png?1311)
B B C C A A M M K K H H I I P P Q Q T T
a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.
Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.
b) Gọi T là giao điểm của MI với AB.
Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\) (Hai góc nội tiếp)
Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)
Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)
\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)
Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)
Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^4-8x^2+x+12=0\)
\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x-4x^2+4x+12=0\)
\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)-4\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\\x^2+x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-1\right)^2-\left(-4\left(1\cdot3\right)\right)=13\\\Delta\left(2\right)=1^2-\left(-4\left(1\cdot4\right)\right)=17\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{1\pm\sqrt{13}}{2}\\x_{1,2}=\frac{-1\pm\sqrt{17}}{2}\end{cases}}\)
b)\(x^4+5x^3-10x^2+10x+4=0\)
\(\Leftrightarrow x^4-2x^3+2x^2+7x^3-14x^2+14x+2x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x^2-2x+2\right)+7x\left(x^2-2x+2\right)+2\left(x^2-2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+7x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+2=0\\x^2+7x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-2\right)^2-4\cdot1\cdot2=-4< 0\left(loai\right)\\\Delta\left(2\right)=7^2-4\cdot1\cdot2=41\end{cases}}\)\(\Rightarrow x_{1,2}=\frac{-7\pm\sqrt{41}}{2}\)