\Bài 1 a) Tìm giá trị nhỏ nhất của biểu thức \(C=\frac{-4}{\left(2x-3\right)^2+5}\)
b) Chứng minh rằng từ tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)suy ra hệ thức \(a^2=b.c\)
Ai giải được 3 tick nha nhớ kb nữa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2007\right|+\left|x-2010\right|+\left|x-2008\right|+\left|y-2009\right|\)
\(\ge\left|x-2007+2010-x\right|+\left|x-2008\right|+\left|y-2009\right|=3+0+0=3\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2007\right)\left(2010-x\right)\ge0\\\left|x-2008\right|=0\\\left|y-2009\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2008\\y=2009\end{cases}}\)
Vậy x = 2008 và y = 2009
\(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\)
\(\Rightarrow\left|x-2017\right|+\left|x-2018\right|+\left|2010-x\right|+\left|y-2009\right|=3\)
Ta có :+) \(\left|x-2007\right|+\left|2010-x\right|\ge\left|x-2007+2010-x\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2007\right)\left(2010-x\right)\ge0\Leftrightarrow2007\le x\le2010\)
+) \(\left|x-2008\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow x-2008=0\Leftrightarrow x=2008\)
+)\(\left|y-2009\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y-2009=0\Leftrightarrow y=2009\)
\(\Rightarrow\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|\ge3\)
\(\Rightarrow\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\)
\(\Leftrightarrow\hept{\begin{cases}2007\le x\le2010\\x=2008\\y=2009\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2008\\y=2009\end{cases}}\)
Vậy................................
Áp dụng ta đc:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow P=6\)
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Xét \(a+b+c\ne0\)
\(\Rightarrow a=b=c\)
Thay vào P ta được P=6
Xét \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Thay vào P ta được P= -3
Vậy P có 2 gtri là ...........
Bài 1 :
a) \(C=\frac{-4}{\left(2x-3\right)^2+5}\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy....
b) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Leftrightarrow ac-a^2-ab-ac+ab-a^2=-bc-bc\)
\(\Leftrightarrow-2a^2=-2bc\)
\(\Leftrightarrow a^2=bc\left(đpcm\right)\)
b) a+b/a-b = c+a/c-a
=> (a+b).(c-a) = (a-b).(c+a)
<=> (a+b).c - (a+b).a = (a-b).c + (a-b).a
<=> ac+bc - a^2-ba = ac-bc + a^2 - ba
<=> ac -ac + bc + bc -ba +ba = a^2 +a^2
<=> 2bc = 2a^2
<=> bc = a^2 (đccm)
Chúc bạn hc tốt