Cho a,b,c>0. Chứng minh rằng : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}>=a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OA.OD=OB.OC\)
b) \(\Delta OAB~\Delta OCD\)
\(\Rightarrow\)\(\frac{OA}{AC}=\frac{AB}{CD}\)
\(\Rightarrow\)\(OA=\frac{OC.AB}{CD}=3\)
\(\Rightarrow\)\(AC=OA+OC=9\)
\(\Delta AEO~\Delta ADC\) ( do OE // DC )
\(\Rightarrow\)\(\frac{OE}{DC}=\frac{OA}{AC}\) \(\Rightarrow\) \(OE=\frac{OA.DC}{AC}=\frac{10}{3}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{1}=bc+ac+ab\Rightarrow a+b+c>bc+ac+ab\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1\)
\(=1-1+a+b+c-ac-bc-ab=a+b+c-\left(ac+bc+ab\right)\)
vì \(a+b+c>bc+ac+ab\)(chứng minh trên)\(\Rightarrow a+b+c-\left(bc+ac+ab\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

PT \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)-\left(\frac{1}{1+ab}-\frac{1}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b\left(b-a\right)}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}\left(\frac{a}{1+a^2}-\frac{b}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}.\frac{a+ab^2-b-a^2b}{\left(1+a^2\right)\left(1+b^2\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{ab+a}.\frac{\left(ab-1\right)\left(b-a\right)}{\left(1+a^2\right)\left(1+b^2\right)}< 0\\\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(ab+1\right)}< 0\)
vì \(\left(b-a\right)^2\ge0;\left(1+a^2\right),\left(1+b^2\right)>0\)
\(\Leftrightarrow\frac{ab-1}{ab+1}< 0\left(vớia\ne b\right)\)
vì \(ab-1< ab+1\)
\(\Leftrightarrow\hept{\begin{cases}ab-1< 0\\ab+1>0\end{cases}\Leftrightarrow-1< ab< 1}\)
Vậy nghiệm của PT là \(-1< ab< 1\) và \(a\ne b\)
Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)
= \(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)
= \(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)
= \(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\) \(\ge0\)
Do a,b,c > 0
Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Đẳng thức xảy ra <=> a = b = c