So sánh A và B biết :A=(100^99+99^99)^100 Và B=(100^100+99^100)^99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác OCA và tam giác ODB có: góc O chung
OB = OA (Gt)
góc OBD = góc OAC = 90
=> tam giác OCA = tam giác ODB (cgv-gnk)
=> OC = OD (Đn)
=> tam giác OCD cân tại O (đn)
+ OC = OD (cmt)
OA = OB (gt)
OA + AD = OD
OB + BC = OC
=> BC = AD
xét tam giác BIC và tam giác AID có :
góc BCI = góc IDA do tam giác OCA = tam giác ODB (cmt)
góc CBI = góc DAI = 90
=> tam giác BIC = tma giác AID (cgv-gnk)
=> IC = ID (đn)
=> tam giác ICD cân tại I (đn)
b. xét tam giác ODC có :
CA _|_ OD
DB _|_ OC
BD cắt CA tại I
=> OI _|_ DC (đl)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặc điểm | Lớp cá | Lưỡng cư | Bò sát | Chim |
Tim | Hai ngăn: Một tâm nhĩ và một tâm thất. | Ba ngăn: Hai tâm nhĩ và một tâm thất. | Ba ngăn: Hai tâm nhĩ và một tâm thất. Tâm thất có vách hụt. | Bốn ngăn: Hai tâm nhĩ và hai tâm thất. |
Vòng tuần hoàn | Một vòng tuần hoàn. | Hai vòng tuần hoàn. | Hai vòng tuần hoàn. | Hai vòng tuần hoàn. |
Máu đi nuôi cơ thể | Máu đỏ thẫm. | Máu pha. | Máu pha ít. | Máu đỏ tươi. |
![](https://rs.olm.vn/images/avt/0.png?1311)
Bộ xương thằn lằn cũng có các bộ phận tương tự bộ xương ếch. Tuy nhiên bộ xương thằn lằn có nhửng bộ phận phát triển hơn so với xương ếch. ơ thằn lằn đốt sống thân mang xương sườn, một sô kết hợp với xương mó ác tạo thành lồng ngực để bảo vệ nội quan và tham gia hô hấp, cổ có 8 đốt sống (nhiều hơn ở ếch đồng), nên rất linh hoạt, phạm vi quan sát rộng. Đốt sống đuôi dài, đuôi dài có tác dụng làm tăng ma sát giúp cho sự di chuyển trên cạn.
hok tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2x^2+3x+1=\left(2x^2+2x\right)+\left(x+1\right)\)
\(=2x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(2x+1\right)\)
Ta có: \(\left|x\right|=\frac{1}{2}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{2}\end{cases}}\)
TH1: Nếu \(x=\frac{-1}{2}\)\(\Rightarrow A=\left(\frac{-1}{2}+1\right)\left(2.\frac{-1}{2}+1\right)=\left(\frac{-1}{2}+1\right)\left(-1+1\right)=0\)
TH2: Nếu \(x=\frac{1}{2}\)\(\Rightarrow A=\left(\frac{1}{2}+1\right)\left(2.\frac{1}{2}+1\right)=\frac{3}{2}.\left(1+1\right)=\frac{3}{2}.2=3\)
Vậy \(A=0\)hoặc \(A=3\)
b) Thay \(x=-1\)và \(y=2\)vào biểu thức ta được:
\(B=\left(-1\right)^2.2-3.\left(-1\right).2^2+\left(-1\right)^2.2^2=2+12+4=18\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, tam giác ABC cân tại A (gt)
=> góc B = (180 - góc A) : 2
góc A = 50 (gt)
=> góc B = (180 - 50) : 2
=> góc B = 65
b, xét tam giác AMB và tam giác AMC có : AB = AC do tam giác ABC cân tại A (gt)
góc ABC = góc ACB do tam giác ABC cân tại A (gT)
BM = MC do M là trđ của BC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
=> góc AMB = góc AMC (đn)
mà góc AMB + góc AMC = 180 (kb)
=> góc AMB = 90
=> AM _|_ BC (đn)
b, tam giác AMB = tam giác AMC (Câu b)
=> góc MAB = góc MAC (đn) mà AM nằm giữa AB và AC
=> AM là pg của góc BAC (đn)
A B C M 1 1 2 2
A)VÌ \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT TAM GIÁC ABC
CÓ\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(đ/l\right)\)
THAY\(50^o+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
vì\(\widehat{B}=\widehat{C}\)
THAY \(\widehat{C}+\widehat{C}=130^o\)
\(2\widehat{C}=130^o\)
\(\widehat{C}=130^o:2=65^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=65^o\)
B)XÉT\(\Delta BAM\)VÀ\(\Delta CAM\)CÓ
\(BA=CA\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(GT\right)\)
\(BM=CM\left(GT\right)\)
\(\Rightarrow\Delta BAM=\Delta CAM\left(C-G-C\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)HAI GÓC TƯƠNG ỨNG
MÀ \(\widehat{M_1}+\widehat{M_2}=180^o\left(KB\right)\)
THAY\(\widehat{M_2}+\widehat{M_2}=180^o\)
\(2\widehat{M_2}=180^o\)
\(\widehat{M_2}=180^o:2=90^o\)
VẬY \(AM\perp BC\left(đpcm\right)\)
c) \(AM\perp BC\left(cmt\right)\)
=> AM LÀ ĐƯƠNG CAO CỦA TAM GIÁC ABC
TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG PHÁP TUYẾN,PHÂN GIÁC,TRUNG TUYẾN
=> AM LÀ PHÂN GIÁC CỦA\(\widehat{BAC}\)