K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

giá trị nhỏ nhất của biểu thức A là -4022

31 tháng 7 2023

giải thích cụ thể và cách làm dc ko bn

 

31 tháng 7 2023

Khi x = -2, biểu thức trở thành |-2+2|/|-2-3| = 0/|-5| = 0.
Khi x = 3, biểu thức trở thành |3+2|/|3-3| = 5/0, không xác định.

Ta cần xem xét khoảng giá trị của x để tìm giá trị nhỏ nhất của biểu thức này.

Khi x < -2, ta có |x+2| < 0 và |x-3| < 0, hãy làm điều đó với biểu thức không xác định.

Khi -2 < x < 3, ta có |x+2| > 0 và |x-3| < 0, hãy làm điều đó với biểu thức không xác định.

Khi x > 3, ta có |x+2| > 0 và |x-3| > 0, do đó biểu thức có giá trị dương.

Vì vậy, giá trị nhỏ nhất của biểu thức |x+2|/|x-3| là 0.

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x+2|+|x-3|=|x+2|+|3-x|\geq |x+2+3-x|=5$

Vậy GTNN của biểu thức là $5$. Giá trị này đạt tại $(x+2)(3-x)\geq 0$

$\Leftrightarrow -2\leq x\leq 3$

31 tháng 7 2023

Ta có:
24 = 2^3 * 3
18 = 2 * 3^2

Ước tính chung lớn nhất của 24 và 18 là 2 * 3 = 6.

Do đó, có thể chia lớp thành 6 tổ, mỗi tổ có 24/6 = 4 học sinh nam và 18/6 = 3 học sinh nữ.

31 tháng 7 2023

Có 4 cách:
Cách 1: Chia 3 tổ mỗi tổ 8 nam 6 nữ
Cách 2: Chia 4 tổ mỗi tổ 6 nam 3 nữ
Cách 3: Chia 2 tổ mỗi tổ 12 nam 9 nữ
Cách 4: Chia 6 tổ mỗi tổ 4 nam 3 nữ

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

a. $x$ là số dương khi mà $x=\frac{3a-2}{4}>0$

$\Rightarrow 3a-2>0$

$\Rightarrow a> \frac{2}{3}$

b. 

$x$ là số âmkhi mà $x=\frac{3a-2}{4}<0$

$\Rightarrow 3a-2<0$

$\Rightarrow a< \frac{2}{3}$

c. $x$ không âm không dương

Tức là $x=\frac{3a-2}{4}=0$

Hay $a=\frac{2}{3}$

31 tháng 7 2023

a) Để \(X=\dfrac{3a-2}{4}\) là số dương

\(\Rightarrow3a-2\) lớn hơn 0 ( 4 là số dương)

\(\Rightarrow a\) lớn hơn \(\dfrac{2}{3}\)

b) Để \(X=\dfrac{3a-2}{4}\) là số âm

\(\Rightarrow3a-2\) nhỏ hơn 0 (vì 4 là số dương)

\(\Rightarrow a\) nhỏ hơn \(\dfrac{2}{3}\)

c) Để X không dương không âm

\(3a-2=0\)

\(\Rightarrow a=\dfrac{2}{3}\)

31 tháng 7 2023

giúp tui với

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

Vì $\widehat{aOb}, \widehat{bOc}$ kề nhau và có tia $Ob$ chung nên $Ob$ nằm giữa $Oa, Oc$

$\Rightarrow \widehat{aOc}=\widehat{aOb}+\widehat{bOc}=75^0+40^0=115^0$

31 tháng 7 2023

Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.

Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\)     (*)

 Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).

 Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:

 \(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\)              (1)

 Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\).     (**)

 Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).

 Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\)  thì

 \(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)

 Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\)         (2)

 Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)

 Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)

31 tháng 7 2023

\(A=\left(2x-1\right)^4+3\)

mà \(\left(2x-1\right)^4\ge0,\forall x\)

\(\Rightarrow A=\left(2x-1\right)^4+3\ge0+3=3\)

\(\Rightarrow GTNN\left(A\right)=3\left(x=\dfrac{1}{2}\right)\)

\(B=-\left(8x-\dfrac{4}{5}\right)^6+1\)

mà \(-\left(8x-\dfrac{4}{5}\right)^6\le0,\forall x\)

\(\Rightarrow B=-\left(8x-\dfrac{4}{5}\right)^6+1\le0+1=1\)

\(\Rightarrow GTLN\left(B\right)=1\left(x=\dfrac{1}{10}\right)\)