Hai đường chéo của hình thoi bằng 18cm và 24cm.Tính chu vi hình thoi và khoảng cách giữa các cạnh song song
Mk cần gấp lắm mong mọi nguời giúp !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-2x^2-x-6=0\)
\(\Rightarrow x^2\left(x-2\right)-\left(x-2\right)=8\)
\(\Rightarrow\left(x-2\right)\left(x^2-1\right)=8\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)=8\)
tự làm tiếp nha
Forever Miss You làm sai nhé ! x có phải là số nguyên đâu mà bước cuối định lập bảng ước ?
\(x^3-2x^2-x-6=0\)
\(\Leftrightarrow x^3-3x^2+x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2\left(x-3\right)+x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\right]=0\)
Vì [....] > 0 V x
=> x - 3 = 0
<=> x = 3
Bài này thiếu đề rồi bạn !
P/S : Chúc mừng năm mới !!!
B C A D M N E E
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
Gọi chiều dài ban đầu là a (m), chiều rộng ban đầu là b (m) \(\left(0< a;b< 20\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=20\\ab-\left(a+3\right)\left(b-5\right)=43\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+3b=60\\ab-\left(ab-5a+3b-15\right)=43\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3a+3b=60\\5a-3b=28\end{cases}}\Leftrightarrow\hept{\begin{cases}8a=88\\3a+3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}a=11\\b=9\end{cases}}\) (thỏa mãn)
Vậy chiều dài ban đầu là 11 m và chiều rộng ban đầu là 9 m
\(PT< =>x^4+5x^3-6x^2-6x+5x^2-6x-6=0\)
\(< =>x^4+5x^3-x^2-12x-6=0\)
\(< =>\left(x^2-x-1\right)\left(x^2+6x+6\right)=0\)
<=>\(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)hay \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
Vậy \(S=\left\{\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2};-3+\sqrt{3};-3-\sqrt{3}\right\}\)
\(A=\frac{3.\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+1+4}=3+\frac{2}{\left(x-1\right)^2+4}\ge3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x-1=0
=> x=1
\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
\(A=\frac{2x^2-4x+10+x^2-2x+7}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)+x^2-2x+5+2}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)}{x^2-2x+5}+\frac{x^2-2x+5}{x^2-2x+5}+\frac{2}{x^2-2x+5}\)
\(A=2+1+\frac{2}{x^2-2x+1+4}\)
\(A=3+\frac{2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\le3+\frac{2}{4}=\frac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Ta có:\(3\left(\frac{ab+bc+ca}{a+b+c}\right)^2\le3\left[\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}\right]^2\)\(=3\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)(1)
Mặt khác:\(\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2\ge2.\frac{ab}{c}.\frac{bc}{a}=2b^2\)(2)
Tương tự ta cũng có:\(\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge2c^2\)(3);\(\left(\frac{ca}{b}\right)^2+\left(\frac{ab}{c}\right)^2\ge2a^2\)(4)
Cộng theo vế (1),(2),(3) ta được:\(2\left[\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\right]\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge a^2+b^2+c^2\)(5)
Từ (1) và (5) suy ra điều phải chứng minh.Dấu "=" xảy ra khi \(a=b=c\)
A = (x^5 + 1)/(x³ + 1) = x² + (1 - x²)/(x³ + 1)
= x² + (1 - x)/(x² - x + 1)
Để A nguyên thì B = (1 - x)/(x² - x + 1) nguyên
=> Bx² + (1 - B)x + (B - 1) = 0
Để có nghiệm thì
∆ = (1 - B)² - 4.B.(B - 1) ≥ 0
<=> 0 ≤ B ≤ 1
Thế vô làm tiếp
dễ hiểu hơn nè
Ta có : để A là số nguyên thì x5 + 1 \(⋮\)x3 + 1
\(\Rightarrow\)x2 ( x3 + 1 ) - ( x2 - 1 ) \(⋮\)x3 + 1
\(\Rightarrow\)( x - 1 ) ( x + 1 ) \(⋮\)( x + 1 ) ( x2 - x + 1 )
\(\Rightarrow\)x - 1 \(⋮\)x2 - x + 1 ( vì x + 1 khác 0 )
\(\Rightarrow\)x ( x - 1 ) \(⋮\)x2 - x + 1
\(\Rightarrow\)x2 - x \(⋮\)x2 - x + 1
\(\Rightarrow\)( x2 - x + 1 ) - 1 \(⋮\)x2 - x + 1
\(\Rightarrow\)1 \(⋮\)x2 - x + 1
xét 2 trường hợp :
n2 - n + 1 = 1 \(\Rightarrow\)n ( n - 1 ) = 0 \(\Rightarrow\)n = 0 ; n = 1
n2 - n + 1 = -1 \(\Rightarrow\)n2 - n + 2 = 0 ( vô nghiêm )
vậy x = 0 ; x = 1 thì A có giá trị là số nguyên
A B C D O
Lời giải đâu bạn ?????