K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

tam giác AMB có:AM nhỏ hơn hoặc =AB+BM(ko cần chứg minh vì có trog SGK)

-------------AMC có:AM---------------------= AC+MC 

=)) 2AM nhỏ hơn hoặc =(AB+BM+AC+MC=AB+AC+BC 

=))2AM < AB+AC 

=)) AM<(AB+AC)/2

♥Tomato♥

5 tháng 3 2019

Gợi ý làm bài :

HS tự vẽ hình, viết GT, KL.

a, \(\triangle ABC\) đều vì có AB = AC và \(\widehat{B}=60^{\text{o}}\).

b, Trong một tam giác đều, 3 đường cao bằng nhau (HS tự chứng minh).

Chiều cao của tam giác đều được tính bằng công thức \(h=a\frac{\sqrt{3}}{2}\).

c, HS tự chứng minh.

Nhận xét : Trọng tâm, trực tâm, tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp là 4 điểm trùng nhau.

5 tháng 3 2019

Hình vẽ :

A B C H K L

5 tháng 3 2019

A = (x^2 - 9)^2 + |y - 2| + 10

có (x^2 - 9)^2 > 0; |y - 2| >

=> (x^2 - 9)^2 + |y - 2| > 0

=> (x^2 - 9)^3 + |y - 2| + 10 > 10

=> A > 10

=> Min A = 10 

dấu = xảy ra khi :

(x^2 - 9)^2 = 0 và |y  - 2| = 0

=> x^2 - 9 = 0 và y - 2 = 0

=> x^2 = 9 và y = 2

=> x = + 3 và y = 2

nhận thấy : (x^2-9)^2 >=0

|y-2|>=0

=> biểu thức (x^2-9)+|y-2|>=0

=>(x^2-9)+|y-2|+10>=10

=>GTNN của biểu thức là 10 khi 

(x^2-9)^2=0<=>x^2-9=0<=>x=+-3

|y-2|=0 <=> y=2

Vậy giá trị nhỏ nhất của biểu thức là 10 khi x=3 ;y=2 và x=-3 và y=2

5 tháng 3 2019

tự kẻ hình : 

xét tam giác AHB và tam giác HAC có : AB = AC do tam giác ABC vuông cân

AH chung

góc AHB = góc AHC = 90 do ...

=> tam giác AHB = tam giác HAC (cgv - gnk)

=> AH = HB và góc AHB = 90 do...

=> tam giác AHB vuông cân (đn)

b, tam giác AHB = tam giác HAC (Câu a)

=> góc CAH = góc HBA (đn)

góc CAH + góc HAM = 180 (kb)

góc HBA + góc HBN = 180 (kb(

=> góc HAM = góc HBN 

xét tam giác HAM và tam giác HBN có : AM = BN (gt)

AH = HB (câu a)

=> tam giác HAM = tam giác HBN (c - g - c(

c, có góc AHM  + góc MHB = 90 

góc AHM = góc  BHN do tam giác HAM = tam giác HBN (Câu b)

=> góc MHN = 90 

HM = HN do tam giác HAM = tam giác HBN (câu a)

=> tam giác HMN vuông cân

5 tháng 3 2019

1/2.5 nhé

5 tháng 3 2019

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)

\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{101-98}{98.101}\)

\(3A=\frac{5}{2.5}-\frac{2}{2.5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)

\(3A=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)

\(\Leftrightarrow A=\frac{99}{202}\div3\)

\(\Rightarrow A=\frac{33}{202}\)

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 3 2019

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

Ta có : 

\(\frac{2}{1.3}=1-\frac{1}{3}\)

\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)

...............................

\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)

\(\Rightarrow C=\frac{n}{2n+1}\)

5 tháng 3 2019

bn lên mạng hoặc vào xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK