K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Đề  2 vòi nước cùng chảy vào 1 bể nước cạn sau 1 giờ 3 phút (sai mk sửa thành 1 giờ 30 phút )thì đầy bể. Nếu mở riêng từng vòi, thì vòi thứ 1 chảy đầy bể chậm hơn vòi thứ 2 là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu thì đầy bể

Trong 1 giờ hai vòi cùng chảy vào bể được số phần bể là : 

                         1 : 1,5 = 2/3 (bể)

Trong 1 giờ vòng thứ nhất chậm ơn vòi thứ hai là : 

                          1 : 2 = 1/2 (bể)

Trong một giờ vòi thứ nhất chảy được số phần bể là : 

                          (2/3 - 1/2) : 2= 1/12 (bể)

Trong một giờ vòi thứ hai chảy được số phần bể là : 

                         2/3 - 1/12 = 7/12 (bể)

Nếu mở riêng vòi thứ nhất thì sâu số thời gian đầy bể là : 

                          1 : 1/12 = 12 (giờ)

Nếu  mở riêng vòi thứ hai thì sâu số thời gian đầy bể là : 

                           1 : 7/12 = 12/7 (giờ)

                                     Đáp số : 12 giờ ; 12/7 giờ

4 tháng 6 2017

kết quả = -7 và hãy kết bạn với mình nha

4 tháng 6 2017

\(-7\)
 

4 tháng 6 2017

Gọi vận tốc dự kiến của xe là : x km/h

gọi điểm xe bị hỏng là C:

Quãng đường từ A đến C là : 2x km

Quãng đường CB là : 90 -2x

Thời gian xe đi với vận tốc dự kiến từ A đến C là : \(\frac{90}{x}h\left(x\ne0\right)\)

Thời gian xe đi với vận tốc đã tăng tốc đi từ C đến B là : \(\frac{90-2x}{x+10}\)

Thự tế xe đến kịp so với thời gian dự kiến nên :

\(\frac{90}{x}=\frac{90-2x}{x+10}+2+\frac{1}{4}\Leftrightarrow90.4\left(x+1\right)=4x\left(90-2x\right)+9x\left(x+1\right)\)

\(\Leftrightarrow x^2+9x-90=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-15\left(L\right)\end{cases}}\)

Vậy vận tốc ban đầu của xe là : 6 km/h

4 tháng 6 2017
  1. có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\)   nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
4 tháng 6 2017

Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)

Cộng theo vế 2 BĐT trên có:

\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Bài 2: Áp dụng BĐT AM-GM ta có:

\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(\le2+\left(x-1\right)+\left(3-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:

\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)

Từ (1);(2) xảy ra khi 

\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)

Vậy x=2 là nghiệm của pt

4 tháng 6 2017

Tứ giác nội tiếp là tứ giác có 4 đỉnh nằm trên 1 đường tròn.

4 tháng 6 2017

Một tứ giác nội tiếp có thể được chia nhỏ thành vô số các tứ giác nội tiếp khác.

  • Một hình vuông (chữ nhật) có thể chia thành vô số các hình vuông, hình chữ nhật, vốn là các tứ giác nội tiếp.·
  • Một hình thang cân có thể chia nhỏ thành vô số các hình thang cân bằng (vô số) các đường thẳng song song với đáy và cắt hai cạnh bên.
  • Một tứ giác nội tiếp bất kì cũng có thể được chia thành bốn tứ giác sau:

Từ đa giác nội tiếp lớn ban đầu hãy sắp đặt đa giác sao cho cạnh kề với hai góc nhọn ở dưới. Sau đó kẻ ba đường thẳng song song với ba cạnh để tạo thành hai hình thang cân (1) và (2). Hình thang còn lại, (3), tuy không phải là cân nhưng là tứ giác nội tiếp. Hình (4) có các cạnh song song với tứ giác nội tiếp ban đầu nên đồng dạng và do đó cũng là tứ giác nội tiếp.

Ta có thể áp dụng cách như trên đối với hình (4) để được (vô số) các tứ giác nội tiếp; cũng như phân chia các hình thang cân (1) và (2) thành vô số các hình thang cân (nội tiếp) khác.

Nếu gọi a,b,c,d là độ dài 4 cạnh của tứ giác. p và q là độ dài của hai đường chéo. S là diện tích của tứ giác. R là bán kính đường tròn ngoại tiếp tứ giác. Ta có các công thức:

{\displaystyle {\frac {p}{q}}={\frac {ad+cb}{ab+cd}},\quad p^{2}={\frac {(ac+bd)(ad+bc)}{ab+cd}}\quad {\text{và}}\quad q^{2}={\frac {(ac+bd)(ab+dc)}{ad+bc}}.}

{\displaystyle S={\frac {\sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4R}}\,}

4 tháng 6 2017

\(-x^2+7x+8=0\Leftrightarrow-x^2-x+8x+8\)\(=0\)

\(\Leftrightarrow-x\left(x+1\right)+8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(8-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\8-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=8\end{cases}}\)

4 tháng 6 2017

Cách 1 : Thêm bớt nhóm nhân tử chung :

\(-x^2+8x-x+8=0\Leftrightarrow-x\left(x-8\right)-\left(x-8\right)=0\Leftrightarrow\left(1+x\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=8\end{cases}}\)

Cách 2 : DÙNG CÔNG THỨC NGHIỆM :

\(\Delta=7^2+4.8=81\Rightarrow\sqrt{\Delta}=9\)

\(\Rightarrow\orbr{\begin{cases}x_1=\frac{-7-9}{-2}=8\\x_2=\frac{-7+9}{-2}=-1\end{cases}}\)

4 tháng 6 2017

Phương trình có hai nghiệm phân biệt khi : \(\Delta^'>0\)

\(\Rightarrow\Delta^'=4-\left(m+1\right)=3-m>0\Leftrightarrow m< 3\)

Ta có theo viet : \(x_1x_2=m+1\)để phương trình có hai nghiệm trái dấu thì : \(x_1x_2=m+1< 0\Leftrightarrow m< -1\)kết hợp điều kiện có : \(m< -1\)

mà :\(x_1=4-\sqrt{3-m};x_2=4+\sqrt{3-m}\)do \(\sqrt{3-m}\ge\forall m< 3\)nên về độ lớn trị tuyệt đối  \(x_2>x_1\)

4 tháng 6 2017

Ta có:

\(x^2-4x+m+1=0\)

Để phương trình có 2 nghiệm thì

     \(\Delta=16-4\left(m+1\right)>0\)

<=> \(m< 3\)

=> \(x_1=\frac{4+\sqrt{12-4m}}{2},x_2=\frac{4-\sqrt{12-4m}}{2}\)

Dễ dàng nhận thấy \(x_1>0\)

=> \(x_2< 0\)

=> \(4< \sqrt{12-4m}\)

=> \(16< 12-4m\)

=> \(4m< -4\)

=> \(m< -1\)

( thỏa mã điều kiện m<3)