\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a. Tìm điều kiện xác định
b. Rút gọn
c. Tìm x nguyên để q nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\)
Sau đó áp dung AM-GM và Cauchy-Schwartz
Đặt \(A=3x^2+y^2+2xy+4x\)
\(\Leftrightarrow A=y^2+2xy+x^2+2x^2+4x+2-2\)
\(\Leftrightarrow A=\left(x+y\right)^2+2\left(x+1\right)^2-2\)
Vì \(\left(x+y\right)^2\ge0;2\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+1\right)^2-2\ge-2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y=0\\x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)
Vậy Min A=-2 khi \(y=1;x=-1\)
\(3x^2+y^2+2xy+4x\)
\(=x^2+2xy+y^2+2x^2+4x+2-2\)
\(=\left(x+y\right)^2+2.\left(x+1\right)^2-2\ge-2\)
Dấu bằng xảy ra khi
\(\hept{\begin{cases}x=-y\\x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}}\)
Vậy Min \(3x^2+y^2+2xy+4x\)=2 khi x=-1;y=1
vi met phut o lech san bech]
ffffffffffffffffffffffffffffffffffffffffffff,
gggggggggggggg,f,,,,,,,,,,,,,,,,
Gọi E,FE,F lần lượt là trung điểm của cạnh BD;ACBD;AC; HH trung điểm CA′CA′ và II là giao điểm của EFEF và AA′AA′
▹▹ Xét tam giác CA′ACA′A Có FHFH là đường trung bình nên AA′//FHAA′//FH ⇒A′I//FH⇒A′I//FH
▹▹ Xét tam giác EHFEHF có A′I//FHA′I//FH và A′A′ trung điểm EHEH nên suy ra II trung điểm EFEF
Suy ra AA′AA′ đi qua trung điểm II của EFEF cố định.
▹▹ Chứng minh tương tự ta cũng có BB′;CC′;DD′BB′;CC′;DD′ đi qua II
Vậy 4 đoạn thẳng AA′;BB′;CC′;DD′AA′;BB′;CC′;DD′ đồng quy tại một điểm
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
giải chi tiết giúp mình đc không ạ?