P=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tính P khi x=\(14-6\sqrt{5}\)
c) Tính GTNN của P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right).\left(4x^2+2x+1\right)\)
\(=8x^3+4x+2x-4x^2-2x-1\)
\(=8x^3-4x^2+4x-1\)
a) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=2x4x^2+2x2x+2x-4x^2-2x-1\)
\(=8x^3+4x^2+2x-4x^2-2x-1\)
\(=8x^3-1\)
b) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=x^2+2xy-xz+2xy+4y^2-2yz+xz+2yz-z^2\)
\(=x^2+2xy+2xy+4y^2-z^2\)
c)\(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=x^6+3x^4+9x^2-3x^4-9x^2-27\)
\(=x^6-27\)
Bình phương hai vế của PT
Ta có: \(x+x^2+2\sqrt{\left(x+x^2\right)\left(x-x^2\right)}+x-x^2=x^2+2x+1\)
\(\Leftrightarrow2\sqrt{x^2-x^4}=x^2+1\)
\(\Leftrightarrow x^2-x^4=\left(\frac{x^2+1}{2}\right)^2\)
\(\Leftrightarrow x^2-x^4=\frac{x^4+2x^2+1}{4}\)
\(2x^2=5x^4+1\)
Không biết giải vậy đúng ko nữa Haizzzz.......
Dễ mà
\(=\left(c-2d\right)^3+3\left(c-2d\right)^2\left(c+2d\right)+3\left(c-2d\right)\left(c+2d\right)^2+\left(c+2d\right)^3\)
\(=\left(c-2d+c+2d\right)^3=\left(2c\right)^3=8c^3\)
x | \(\frac{5}{2}\) | 4 | |||
2x-5 | - | 0 | + | | | + |
x-4 | - | | | - | 0 | + |
+) Nếu \(x\le\frac{5}{2}\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\left|x-4\right|=4-x\)
\(pt\Leftrightarrow5-2x-4+x=4x\)
\(\Leftrightarrow-5x=-1\)
\(\Leftrightarrow x=\frac{1}{5}\left(tm\right)\)
+) Nếu \(\frac{5}{2}< x\le4\Leftrightarrow\left|2x-5\right|=2x-5\)
\(\left|x-4\right|=4-x\)
\(pt\Leftrightarrow2x-5-4+x=4x\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\) (loại)
+) Nếu \(x>4\Leftrightarrow\left|2x-5\right|=2x-5\)
\(\left|x-4\right|=x-4\)
\(pt\Leftrightarrow2x-5-x+4=4x\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\frac{1}{3}\)( loại )
Vậy ...
( p/s : câu b tương tự )