K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

a) Bạn tự vẽ.

b) Lập PT hoành độ giao điểm:

(d1) giao (d2): \(-x-5=\frac{1}{4}x\Leftrightarrow x=-4\) thay vào (d1) được y = -1

Vậy: \(A\left(-4;-1\right)\). Tương tự tìm được \(B\left(-1;-4\right)\)

c) Ta có: \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B+y_A\right)^2}=\sqrt{\left(-1+4\right)^2+\left(-4+1\right)^2}=3\sqrt{2}\)

\(OA=\sqrt{x^2_A+y^2_A}=\sqrt{4^2+1^2}=17;OB=\sqrt{x^2_B+y^2_B}=\sqrt{1^2+4^2}=\sqrt{17}\)

=> OAB là tam giác cân.

d) Gọi OAB là đường cao hạ từ điểm O xuống AB (H thuộc AB)

Vì tam giác OAB cân tại O nên \(AH=HB=\frac{1}{2}AB=\frac{3\sqrt{2}}{2}\)

\(OH=\sqrt{OA^2-BH^2}=\sqrt{17-\left(\frac{3\sqrt{2}}{2}\right)^2}=\frac{5\sqrt{2}}{2}\)

\(S_{ABC}=\frac{1}{2}AB.OH=\frac{1}{2}.3\sqrt{2}.\frac{5\sqrt{2}}{2}=\frac{15}{2}\)

29 tháng 11 2017

Gỉa sử chiều cao của tháp là BH , mặt đất là AH

Xét \(\Delta\)ABH ,  \(\widehat{H}\)= 90 \(^o\)

   BH = AH tan 34\(^o\)

        = 86 tan 34\(^o\)

     \(\approx\) 58 m

Vậy chiều cao của tháp khoảng 58 m

29 tháng 11 2017

ác tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng \(34^0\) và bóng của một tháp trên mặt đất dài 86m (h.30). Tính chiều cao của tháp (làm tròn đến mét)

29 tháng 11 2017

đáp án là bằng nhau

2 tháng 12 2017

ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)

8 tháng 5 2024

bcb