K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

ta có \(x^2+\frac{1}{x^2}\)

=\(\left(x+\frac{1}{x}\right)^2-2x\frac{1}{x}=\left(x+\frac{1}{x}\right)^2-2\)

=> \(\left(x+\frac{1}{x}\right)^2=25.vì\)\(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=5\)

\(\left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3x+\frac{3}{x}=x^3+\frac{1}{x^3}+15\)

\(\Rightarrow x^3+\frac{1}{x^3}=5^3+15=110\)

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}=x^5+\frac{1}{x^5}+5\)

\(\Rightarrow x^5+\frac{1}{x^5}=23\cdot110-5=2525\)

Vậy...

13 tháng 2 2019

a)M=[(−4)3+43]:(1+3+5+...+2005)

M=\left[-64+64\right]\cdot(1+3+5+...+2005)M=[−64+64]⋅(1+3+5+...+2005)

M=0\cdot(1+3+5+...+2005)M=0⋅(1+3+5+...+2005)

M=0M=0

b, Như câu a

13 tháng 2 2019

\(a)M=\left[(-4)^3+4^3\right]:(1+3+5+...+2005)\)

\(M=\left[-64+64\right]\cdot(1+3+5+...+2005)\)

\(M=0\cdot(1+3+5+...+2005)\)

\(M=0\)

b, Tương tự