Trên 1 bảng đen ta viết 3 số: \(\sqrt{2};2;\frac{1}{\sqrt{2}}\).Ta thực hiện trò chơi như sau: Mỗi lần chơi xóa đi hai số, giả sử là a và b và viết lên hai số mới là \(\frac{a+b}{\sqrt{2}};\frac{a-b}{\sqrt{2}}\), đồng thời giữ nguyên số còn lại. Chứng minh rằng dù ta có chơi bao nhiêu lần trên bảng cũng không xuất hiện 3 số: \(1+\sqrt{2};\sqrt{2};\frac{1}{2\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
heo định lí hàm số Cos ta có
AB^2+AC^2 - 2*AB*AC*Cos(góc A)= BC^2
=> theo ct Heeroong tính S(ABC)= căn( p(p-AB)(p-BC)(p-CA))
mình chỉ hướng dẫn thôi nhá vì bh mình k có mt
c2; S= 1/2 AB*AC*Sin30
cách này nhanh hơn nhiều
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}.\)
\(A< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(1)
Ta có
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(A>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(2)
Twf (1) vaf (2) => \(\frac{2}{5}< A< \frac{8}{9}\)
Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )
\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\left(1+\frac{1}{1^2}-\frac{1}{2^2}\right)^2-2.\left(1.\frac{1}{1^2}-\frac{1}{1^2}.\frac{1}{2^2}-\frac{1}{2^2}.1\right)}=1+\frac{1}{1^2}-\frac{1}{2^2}\)
Tương tự ta có biểu thức trên
\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(=1+\frac{1}{1^2}-\frac{1}{2^2}+1+\frac{1}{2^2}-\frac{1}{3^2}+...+1+\frac{1}{99^2}-\frac{1}{100^2}\)
\(=1.99+\frac{1}{1^2}-\frac{1}{100^2}\)
\(=100-\frac{1}{10000}\)
\(=99,9999\)
Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy
hử, giả sử ta bớt đi 2 số \(2,\sqrt{2}\),thì ta sẽ viết lên 2 số mới là \(\frac{2+\sqrt{2}}{\sqrt{2}}=\sqrt{2}+1\)(*)và \(\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1\)
(*) xuất hiện rồi nhá, lượt đầu tiên luôn