K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)

Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)

\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))

       \(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)

Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)

Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)

Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o

0
30 tháng 11 2017

ĐK:\(x\ge2\)

Đặt \(\hept{\begin{cases}\sqrt{9x-18}=a\\\sqrt{x+6}=b\end{cases}\left(a,b\ge0\right)}\)\(\Rightarrow\frac{a^2-b^2}{8}=x-3\)

\(pt\Leftrightarrow4\left(a+b\right)=a^2-b^2\)

\(\Leftrightarrow4\left(a+b\right)-\left(a-b\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(4-\left(a-b\right)\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=-b\\b=a-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{9x-18}=-\sqrt{x+6}\left(loai\right)\\\sqrt{x+6}=\sqrt{9x-18}-4\end{cases}}\)

\(\Rightarrow\sqrt{x+6}=\sqrt{9x-18}-4\Rightarrow x=\frac{3\sqrt{5}+11}{2}\)

30 tháng 11 2017

bn sử dụng phương pháp liên hợp nhé

30 tháng 11 2017

bn nhân vao \(\left(\sqrt[3]{x-2}\right)^2+\sqrt[3]{\left(x-2\right)\left(2x-2\right)}+\left(\sqrt[3]{2x-2}\right)^2\)

2 tháng 12 2017

cảm ơn bạn

30 tháng 11 2017

em lạy

30 tháng 11 2017

tụi con còn tuổi học sinh

30 tháng 11 2017

\(=\frac{3.\left(\sqrt{10}+\sqrt{7}\right)}{10-7}+\frac{2.\left(3-\sqrt{7}\right)}{9-7}-2\sqrt{10}\)

\(=\sqrt{10}+\sqrt{7}+3-\sqrt{7}-2\sqrt{10}\)

\(=-\sqrt{10}+3\)