Cho tam giác ABC có AB = AC (\(\widehat{A}\) < 90o ) . Tia Bx \(\perp\) AB cắt tia AC tại D, tia Cy \(\perp\) AC cắt tia AB tại E. Gọi giao điểm của hai tia Bx, Cy là I . Chứng minh rằng :
a, \(AD=AE;BD=CE\)
b, \(\Delta BEC=\Delta CDB\)
c, \(AI\) \(\perp\)\(ED\)
(bn tu ve hinh nha )
a,Xet tam giac AEC va tam giac ABD, ta co:
goc a chung
AB=AC (gt)
goc ABD=goc ACE (=900)
=>tam giac AEC=ABD(g.c.g)
=>AD=AE va BD=CE (tg ung)
b,Theo cau a , ta co ;AD=AE ;AB=AC(cmt)
Ma AB+BE=AE
AC+CD=AD
=>AE-AB=AD-AC
=>BE=CD
Xet tam giac BEC va tam giac CDB , ta co :
BE=CD (cmt0
CB chung
CE=BD(cm cau b )
=> tam giac BEC=tam giac CDB(C.C.C)
c,Goi M la giao diem cua AM vs ED (M thuoc ED)
Theo cau a , AE=AD
Xet tam giac ABI va tam giac ACI , ta co:
goc ABI =goc ACI =900 (gt)
AB=AC(GT)
AI chung
=> tam giac ABI =tam giac ACI(ch-cgv)
=>goc BAI=goc CAI (tg ung)
Xet tam giac AEM va tam giac ADM , ta co
AE=AD (cm cau a)
goc BAI =goc CAI (cmt)
AM chung
=>tam giac AEM =tam giac ADM ( c.g.c)
=>goc AME = goc AMD (tg ung)
ma goc AME+goc AMD =1800(KB)
=>goc AME=goc AMD=1/2*1800=900=>AM vuong goc vs ED
ma I thuoc AM
=>AI vuong goc vs ED
thank you !