Cho các số nguyên a, b thỏa mãn a2 + b2 - 2a(b+4) = 0 . Chứng minh rằng a chia hết cho 2 và a/2 là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3(2x-1)-5(x-3)+6(3x-4) = 24
<=>6x-3-5x+15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=36/19
vậy....
3(2x-1)-5(x-3)+6(3x-4) = 24
<=>6x-3-5x+15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=36/19
\(x^2-13x+40=0\)
\(\Leftrightarrow x^2-5x-8x+40=0\)
\(\Leftrightarrow x\left(x-5\right)-8\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=8\end{cases}}}\)
Vậy ......
x2-13x+40=0
<=>x2-5x-8x+40=0
<=>x(x-5)-8(x-5)=0
<=>(x-5)(x-8)=0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=8\end{cases}}\)
vậy...
\(\left(2x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\3x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\3x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-2}{3}\end{cases}}\)
Có \(\left(a+b\right)^2\ge0\Rightarrow a^2+2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge-2ab\Leftrightarrow-\left(a^2+b^2\right)\ge2ab\)
\(a^3+b^3+2\ge2ab+a+b\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+2-2ab-a-b\ge0\)
\(\Leftrightarrow2-2ab-\left(a+b\right)\ge0\)
\(\Leftrightarrow2-2ab\ge0\)
\(\Leftrightarrow2--\left(a^2+b^2\right)\ge0\Leftrightarrow2+a^2+b^2\ge0\)
Điều này đúng => ĐPCM
Bạn đánh https://vndoc.com/
Ở đó tha hồ tài liệu cho bạn chọn
4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)
=> \(x^2-2xy+y^2+a^2\ge0\)
Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.
b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)
=> \(x^2+2xy+2y^2+2y+1\ge0\)
Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.
c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)
Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)
=> \(9b^2-6b+4c^2+1\ge0\)
Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.
d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
=> \(x^2+y^2+2x+6y+10\ge0\)
Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.
1/
a/ \(x^4-y^4=\left(x^2-y^2\right)\)
b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)
\(=2b\left(a^2+b^2\right)\)
c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)
= \(\left(a+b\right)^2+\left(a+b\right)\)
= \(\left(a+b\right)\left(a+b+1\right)\)
Từ đề bài \(\Rightarrow a^2+b^2-2ab-8a=0\Leftrightarrow\left(a-b\right)^2=8a\)
Hay \(\left(a-b\right)^2=4.2a\)
Vì \(\left(a-b\right)^2;4\)là số chính phương nên \(2a\) là số chính phương chẵn \(\Rightarrow2a=4k^2\left(k\in Z\right)\)
Do đó \(a=2k^2⋮2\) và \(\frac{a}{2}=k^2\) là số chính phương (ĐPCM)
gưgeegfewbfdqa