lấy đối xứng trong tam giác lấy ntn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+3xy\left(x-y\right)\)
\(=x^3-3xy\left(x-y\right)-y^3+3xy\left(x-y\right)\)
\(=x^3-y^3=VT\left(đpcm\right)\)
Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:
\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(36\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)\)
Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)
\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)
\(=1024.f\left(1\right)=1024\)
Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)
\(f\left(32\right)=32;f\left(4\right)=4\)
\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)=2020\)
hay \(f\left(2020\right)=2020\)
Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)
\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=\frac{1}{2020}.3=\frac{3}{2020}\)
Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)
\(C\left(x\right)=ax+b\)
\(\Rightarrow\hept{\begin{cases}C\left(2\right)=2a+b\\C\left(1\right)=a+b\end{cases}}\)
hay \(\hept{\begin{cases}2a+b=-1\left(1\right)\\a+b=0\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được: \(a=-1\)
\(\Rightarrow b=1\)
Vậy a = -1; b = 1
Biến đổi phương trình :\(9x+2=y.\left(y+1\right)\)
Ta thấy vế trái của phương trình là số chia cho \(3\) dư \(2\) nên \(y.\left(y+1\right)\) chia cho \(3\) dư \(2\)
Chỉ có thể :\(y=3k+1;y+1=3k+2\) với k là số nguyên
Khi đó:\(9x+2=\left(3k+1\right).\left(3k+2\right)\)
\(\iff\) \(9x=9k.\left(k+1\right)\)
\(\iff\) \(x=k.\left(k+1\right)\)
Thử lại ,\(x=k.\left(k+1\right);y=3k+1\) thỏa mãn phương trình đã cho
Vậy \(\hept{\begin{cases}x=k.\left(k+1\right)\\y=3k+1\end{cases}}\) với k là số nguyên tùy ý
A. Tam giác có 2 cạnh bằng nhau là tam giác cân.Đúng
B. Tam giác có ba cạnh bằng nhau là tam giác đều.Đúng
C. Tam giác cân là tam giác đều.Sai
D. Tam giác đều là tam giác vuông cân có một góc 60Đúng
E. Hai tam giác vuông bằng nhau nếu hai góc nhọn của tam giác này bằng hai góc nhọn của tam giác vuông kia.Sai
F. Tam giác có 2 góc 45° là tam giác vuông cân.Đúng
A I B C D H E 1 2 Hình ảnh vẫn chỉ mang tính chất minh họa
a) +) Xét \(\Delta\)BID và \(\Delta\)BIC có
BI : cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BD = BC ( gt)
=> \(\Delta\)BID = \(\Delta\)BIC (c-g-c)
b) +) Xét \(\Delta\)BEC và \(\Delta\) BED có
BE: cạnh chung
\(\widehat{B_1}=\widehat{B}_2\) ( gt)
BC = BD ( gt)
=> \(\Delta\)BEC = \(\Delta\)BED (c-g-c)
=> EC = ED ( 2 cạnh tương ứng )
c) Theo câu a ta có \(\Delta\)BID = \(\Delta\)BIC
=> \(\widehat{BID}=\widehat{BIC}\) ( 2 góc tương ứng ) (1)
+)Mà \(\widehat{BID}+\widehat{BIC}=180^o\) (2) ( 2 góc kề bù )
Từ (1) và (2) => \(\widehat{BID}=\widehat{BIC}=\frac{180^o}{2}=90^o\)
+) Lại có BI cắt CD tại I ( gt)
=> BI \(\perp\) CD tại I
+) Mặt khác ta có
\(\hept{\begin{cases}BI\perp CD\left(cmt\right)\\AH\perp CD\left(gt\right)\end{cases}}\)
=> BI // AH ( đpcm)
d) Ta có \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
Mà \(\widehat{ABC}=70^o\) ( gt)
=> \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}=\frac{70^o}{2}=35^o\)
+)Theo câu c ta có BI // AH
=> \(\widehat{HAD}=\widehat{B_1}=35^o\) ( 2 góc so le trong )
+) Xét \(\Delta\)BIC vuông tại I
\(\Rightarrow\widehat{B_2}+\widehat{BCD}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{BCD}+35^o=90^o\)
\(\Rightarrow\widehat{BCD}=55^o\)
Vậy \(\widehat{DAH}=35^o;\widehat{BCD}=55^o\)
Xong rồi nha ___ mỏi hết cả tay rồi
Chúc bạn tui học tốt
Takiagawa Miu_