Bài 2*. Trong cuộc thi học sinh giỏi cấp Tỉnh cho ba môn Văn, Toán, Ngoại Ngữ có số học sinh tham dự như sau: môn Văn có 96 học sinh dự thi, môn Toán có 120 học sinh dự thi, môn Ngoại Ngữ có 72 học sinh dự thi. Trong buổi tổng kết giải các bạn được phân công đứng thành hàng dọc, sao cho mỗi hàng có số bạn thi mỗi môn bằng nhau. Hỏi có thể phân công học sinh đứng thành ít nhất bao nhiêu hàng?
Vì mỗi hàng có số học sinh giỏi các môn như nhau nên số học sinh mỗi hàng là ước chung của: 96; 120; 72;
Để số hàng ít nhất có thể thì số học sinh mỗi hàng phải lớn nhất có thể.
Vậy số học sinh mỗi hàng là ước chung lớn nhất của 96; 120; 72
96 = 25.3; 120 = 23.3.5; 72 = 23.32; ƯCLN(96;120;72) = 23.3 = 24
Số hàng dọc của các học sinh giỏi văn là: 96 : 24 = 4 (hàng)
Số hàng dọc của các học sinh giỏi toán là: 120 : 24 = 5 (hàng)
Số hàng dọc của các học sinh giỏi ngoại ngữ là: 72 : 24 = 3 (hàng)
Vậy có thể phân công học sinh đứng thành ít nhất số hàng là:
4 + 5 + 3 = 12 (hàng)