\(\Delta ABC\)cân tại A, \(BD\perp AC\),\(CE\perp AB\left(D\in AC,E\in AB\right)\)Gọi O là giao điểm của BD và CE
a) CM: \(\Delta ADB=\Delta AEC\)
b) CM:\(\Delta BOC\)cân
c) CM: ED//DC
d) Gọi M là giao điểm của BC. CM: \(EM=\frac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biết vẽ hình ko vẽ hộ cái có hình may ra còn làm đc trên đây mình ko biết vẽ
Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.
Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.
Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)
Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
Ta cần chứng minh: \(a^{2n}+b^{2n}\le c^{2n}\)(1)
* Với n = 1 thì \(a^2+b^2=c^2\)(Đúng với định lý Py - ta - go)
* Với n = 2 thì \(a^4+b^4=a^4+a^2b^2+b^4+a^2b^2-2a^2b^2\)
\(=a^2\left(a^2+b^2\right)+b^2\left(a^2+b^2\right)-2a^2b^2\)
\(=\left(a^2+b^2\right)^2-2a^2b^2\le\left(c^2\right)^2=c^4\)(Đúng với (1))
Giả sử (1) đúng với n, tức là \(a^{2n}+b^{2n}\le c^{2n}\)
Ta cần chứng minh (1) đúng với n + 1
\(\Rightarrow a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}\)
\(=a^{2n}.a^2+b^{2n}.b^2\)
\(=a^{2n}.a^2+a^2.b^{2n}+b^{2n}.b^2+a^{2n}.b^2-a^2.b^{2n}-a^{2n}.b^2\)
\(=a^2\left(a^{2n}+b^{2n}\right)+b^2\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)
\(=\left(a^2+b^2\right)\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)
\(\le c^2.c^{2n}-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}\)(đúng)
Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
M là trung điểm BC bn ạ