K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Đa thức có:

+Một nghiệm duy nhất là 7

\(3\left(x-6\right)=3\)

+Hai nghiệm là 1 và -2

\(\left(x-1\right)\left(x+2\right)=0\)

+Ba nghiệm là -1; 2 và -3

\(\left(x+1\right)\left(x-2\right)\left(x+3\right)=0\)

17 tháng 3 2019

a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)

= 3x2-2xy+y2+x2-xy+2y2-4x2+y2

= 4y2-3xy

b, = x2-y2+2xy-x2-xy-2y2+4xy-1

= -3y2+5xy

c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2

so sánh hệ tuần hoàn của lưỡng cư và bò sát

so sánh hệ tuần hoàn của bò sát và chim

17 tháng 3 2019

Hệ tuần hoàn của lưỡng cư (ếch) Xuất hiện vòng tuần hoàn fổi, tạo thành 2 vòng tuần hoàn với tim ba ngăn ==> máu đi nuôi cơ thể là máu pha. 
Hệ tuần hoàn của bò sát (thằn lằn):thì tim có 3 ngăn, nhưng có thêm một vách hụt ngăn tâm thất tạm thời thành 2 nửa => máu đi nuôi cơ thể ít bị fa hơn 
Hệ tuần hoàn của chim thì tim đã có 4 ngăn, gồm 2 nửa tách nhau hoàn toàn, máu đi nuôi cơ thể là máu đỏ tươi, không bị pha trộn.

17 tháng 3 2019

A B C M N I 1 1 1 2

a) Vì \(\Delta ABC\)cân tại A ( GT )

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( Tính chất tam giác cân )

Xét \(\Delta BMI\left(\widehat{BMI}=90^o\right)\)và \(\Delta CNI\left(\widehat{CNI}=90^o\right)\)có :

          \(BI=CI\)( vì I là trung điểm của BC )

         \(\widehat{ABC}=\widehat{ACB}\)( chứng minh trên )

\(\Rightarrow\Delta BMI=\Delta CNI\)( Cạnh huyền - góc nhọn )

b) VÌ \(\Delta BMI=\Delta CNI\)( chứng minh trên ) 

\(\Rightarrow BM=CN\)( 2 cạnh tương ứng )

 Ta có : \(\hept{\begin{cases}AB=AM+MB\\AC=AN+NC\end{cases}}\)

Mà AB = AC ( vì \(\Delta ABC\)cân tại A ) ; BM = CN ( chứng minh trên )

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\)cân tại A ( Điều phải chứng minh )

c) Vì \(\Delta ABC\)cân tại A nên :

\(\widehat{B_1}=\frac{180^o-M\widehat{AN}}{2}\left(1\right)\)

Vì \(\Delta AMN\)cân tại A nên :

\(\widehat{M_1}=\frac{180^o-\widehat{MAN}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\widehat{B_1}=\widehat{M_1}\)

Mà \(\widehat{B_1}\)và \(\widehat{M_1}\)ở vị trí đồng vị

\(\Rightarrow MN//BC\)( Dấu hiệu nhận biết 2 đường thẳng song song )

d) Xét \(\Delta ABI\)và \(\Delta ACI\)có :

        \(AI\): cạnh chung

        \(BI=CI\)( vì I là trung điểm của BC )

        \(AB=AC\)( vì \(\Delta ABC\)cân tại A )

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-c-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)( 2 góc tương ứng ) 

     \(\widehat{BIA}=\widehat{CIA}\)( 2 góc tương ứng )

Vì \(\widehat{A_1}=\widehat{A_2}\)( chứng minh trên )

=> AI là tia phân giác của \(\widehat{BAC}\)

Vì \(\widehat{BIA}=\widehat{CIA}\)( chứng minh trên )

Mà \(\widehat{BIA}+\widehat{CIA}=90^o\)( 2 góc kề bù )

\(\Rightarrow AI\perp BC\)

e) Áp dụng định lí pi-ta-go vào \(\Delta AIN\)có:

\(IN^2+AN^2=AI^2\)

\(\Rightarrow IN^2=AI^2-AN^2\left(3\right)\)

Áp dụng định lí pi-ta-go vào \(\Delta INC\)có:

\(IN^2+NC^2=IC^2\)

\(\Rightarrow IN^2=IC^2-NC^2\left(4\right)\)

Từ (3) và ( 4)

\(\Rightarrow2IN^2=AI^2-AN^2+IC^2-NC^2\)

\(\Rightarrow2IN^2=\left(AI^2+IC^2\right)-AN^2-NC^2\left(5\right)\)

Theo chứng minh trên ta có : \(AI\perp BC\)

\(\Rightarrow\Delta AIC\)vuông tại I

Áp dụng định lí pi-ta-go vào \(\Delta AIC\)ta có:

\(AC^2=AI^2+IC^2\left(6\right)\)

Từ (5) và (6)

\(\Rightarrow2IN^2=AC^2-AN^2-NC^2\)( Điều phải chứng minh )

Cho tam giác ABC cân tại A,M là trung điểm BC,Kẻ ME vuông góc với AB tại E,MI vuông góc với AC tại I,Chứng minh AE = AI,Chứng minh AM là trung trực của đoạn thẳng EI,Chứng minh EI // BC,AB = 15 cm,BC = 18 cm,Tính độ dài AM và ME,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

a, vì tam giác ABC cân tại A => góc B = góc C ( 2  góc ở đáy bằng nhau )
-tam giác ABM và tam giác ACM có :
AB=AC(gt)                  |
góc B= góc C ( cmt )   | => tam giác ABM=tam giác ACM(c-g-c)
BM=CM (gt)                |
=> góc A1 = góc A2 ( 2 góc t/ứ )
-tam giác AEM và tam giác AIM có
góc AEM=góc AIM(=90 độ)   |
cạnh AM chung                    |=> tam giác AEM= tam giác  AIM ( ch-gn)
góc A1= góc A2(cmt )           |
=> AE=AI(2 cạnh t/ứ)
b, vì tam giác AEI cân tại A => tia phân giác góc A vuông góc với EI 
đặt AM cắt EI tại O
tam giác AEO và tam giác AIO có
góc AOE = góc AOI (=90 độ)   |
AE=AI(cmt)                            | => tam giác AEO và tam giác AIO ( ch-cgv)
AO chung                               |
=> EO = IO ( 2 cạnh t/ứ )
vì AO vuông góc EI và EO = IO =>AO là đg trug trực của EI
mà AM là nối dài của AO => AM là đg trug trực của EI
c, vì tam giác AEI cân tại A => góc AEI = ( 180 độ - góc A ): 2    (1)
   vì tam giác ABC cân tại A  => góc ABC = ( 180 độ - góc A ) : 2   (2)
từ (1) và (2) => góc AEI = góc ABC mà 2 góc này ở vị trí đồng vị => EI // BC
d, vì BM=CM ( gt )   => BM = CM = 18: 2 = 9 (cm)
-AM^2 = AE^2 + BM^2
=>AM^2 = 15^2 - 9^2
=>AM^2 = 144
=>AM   = 12 (cm)

17 tháng 3 2019

A B C H M D

a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)

MB = MC do M là trung điểm của BC (Gt)

góc CMD = góc AMB (đối đỉnh )

=> tam giác CMD = tam giác BMA (c - g - c)

=> góc ABM = góc DCM (định nghĩa)

b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong

=>  CD // AB (đl)

mà CA _|_ AB do tam giác ABC vuông tại A (gt)

=> CA _|_ CD (dl)

=> góc ACD = 90 (đn)

=> tam giác ACD vuông tại C (đn)

c,  xét tam giác ABC và tam giác CDA có : AC chung

góc ABC = góc CDA = 90

AB = CD do tam giác CMD = tam giác BMA (câu a)

=> tam giác ABC = tam giác CDA (2cgv)

=> AD = CB (đn)

M là trung điểm của CB =>  CM = 1/2BC 

CM = MA

 do tam giác CMD = tam giác BMA (Câu a)

=> MA = 1/2BC 

d, 

17 tháng 3 2019

Hình đẹp lắm lè 

A H B C D E O K I

kẻ DO _|_ AH tại O 

EI _|_ AH tại I 

có góc OAD + góc BAD + góc BAH = 180 

góc BAD = 90 do AD _|_ AB (gt)

=> góc OAD + góc BAH = 90    (1)

DO _|_ AH (Cách vẽ) => góc DOA = 90

=> góc ODA + góc DAO = 90    (2)

(1)(2) => góc ODA = góc BAH 

xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90

AD = AB (gt)

=> tam giác ODA = tam giác HAB (ch - gn)

=> DO = AH (định nghĩa)       (3)

làm tương tự với tam giác AHC và tam giác EIA 

=> AH = EI     (4)

(3)(4) => DO = EI 

có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)

xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90

=> tam giác ODK  = tam giác IEK (cgv - gnk)

=> DK = KE  mà K nằm giữa D và E 

=> K là trung điểm của DE

5 tháng 4 2021

Bạn ơi trường hợp cgv-gnk là góc nào vậy

 

17 tháng 3 2019

\(A=\frac{27-2x}{12-x}\inℤ\Leftrightarrow27-2x⋮12-x\)

\(\Rightarrow24-2x+3⋮12-x\)

\(\Rightarrow2\left(12-x\right)+3⋮12-x\)

\(\Rightarrow3⋮12-x\)

\(A=\frac{27-2x}{12-x}=2+\frac{3}{12-x}\)

để A lớn nhất thi 3/12 - x lớn nhất

=> 12 - x là số nguyên dương nhỏ nhất

=> 12-  x = 1 

=> x = 11

thay vào ra max

23 tháng 4 2021

Q = (6x+ 21xy) - (4x2y + 14y2) + 9

Q = 3x(2x2 + 7y) - 2y(2x2 + 7y) + 9

Q = 3x.0 - 2y.0 + 9

Q = 9