căn(29+4 căn 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: x > 1
\(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{9-\left(x-1\right)}\right):\left(\frac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\frac{1}{\sqrt{x-1}}\right)\)
\(P=\frac{\sqrt{x-1}\left(3-\sqrt{x-1}\right)+x+8}{9-\left(x-1\right)}:\frac{3\sqrt{x-1}+1-\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\sqrt{x-1}-x+1+x+8}{10-x}:\frac{2\sqrt{x-1}+4}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\left(\sqrt{x-1}+3\right)}{10-x}.\frac{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}{2\sqrt{x-1}+4}\)
\(P=\frac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)
b) \(x=\sqrt[4]{\frac{17+12\sqrt{2}}{1}}-\sqrt[4]{\frac{17-12\sqrt{2}}{1}}=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
Vậy \(P=\frac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\frac{1}{2}\)
cô Hoàng Thị Thu Huyền làm rõ cho em ý b đc ko ạ chỗ biến đổi x
\(pt\Leftrightarrow y^2-2\sqrt{x}y+\left(5x-4\sqrt{x}+1\right)=0\)
\(\Delta'=\left(\sqrt{x}\right)^2-\left(5x-4\sqrt{x}+1\right)=-4x+4\sqrt{x}-1=-\left(2\sqrt{x}-1\right)^2\)
Do \(-\left(2\sqrt{x}-1\right)^2\le0\Rightarrow\)Để pt có nghiệm thì \(2\sqrt{x}-1=0\Rightarrow x=\frac{1}{4}\)
Khi đó \(y^2-y+\frac{1}{4}=0\Rightarrow y=\frac{1}{2}\)
Vậy \(\left(x;y\right)=\left(\frac{1}{4};\frac{1}{2}\right)\)